The effects of urbanization and Heat island over summer temperature variations in Babol

Document Type : Full length article


1 Assistant Professor of Geography and Urban Planning, Faculty of Social Sciences and Humanities, University of Mazandaran, Mazandaran, Iran

2 Assistant Professor of Marine and Ocean Sciences, University of Mazandaran, Mazandaran, Iran

3 MSc in Urban Climatology, University of Mazandaran, Mazandaran, Iran


The rapid growth of urbanization formed in the 19th century after the industrial revolution in the developed countries. After the revolution, the urban areas of many cities extended rapidly. In those cities many different activities such as transportation, industrial and construction activities is much higher than rural environments. In the urban environments, vegetation and green spaces are lower than those in rural areas. Thus, these activities cause the increased level of temperature in the urban environments compared with surrounding areas. This phenomenon is called “urban heat island”. This urban heat island is one of the main concerns in the urban environments due to its impacts on biological, meteorological, environmental, social and economic issues. For instance, urban heat island causes earlier bloom and the blossom of plants and trees and also prolongation of the growing season. Thus, Babol is one of the densely built cities of Mazandaran province. It is confronted with rapid population growth during the few last decades. The aim of this research is to investigate the impacts of urbanization on heat island and day to day temperature variation in that city.
Materials and methods
The study area is in the Babol city, Mazandaran. Due to the lack of meteorological station in the Babol city, three devices with data logger (MIC 98583 USB-Data Logger, Taiwan) have been equipped to record temperature and relative humidity in three environments of urban, suburban, and green areas. The temperature and relative humidity have been recorded every hour throughout the course of 80 days (July 6 to September 22) in 2015.
The monitoring boxes have been placed at a height of about 2.5 m above the ground surface. This study has investigated the day to day temperature variation with respect to the impacts of urbanization on temperature variations. For this purpose, the two following integrated methods have been used: 1) the day to day temperature variation (DTD); 2) the difference between day to day variability of daily maximum temperature (DTD max) and day to day variability of daily minimum temperature (DTDmin).  
The day to day temperature variation is based on the following equations:



Where Σ is the sum over all n data elements, t is daily temperature, i is the counter that marches through the days in a time period (e.g. a month),| | gives the absolute value, and n is the number of days elements.



Where, ΔDTD is the difference between day to day variability of daily Tmax (DTDtmax) and day to day variability of daily Tmin (DTDtmin). A positive value indicates greater day-time day to day temperature variation and a negative value indicates greater night-time day to day temperature variation. The significant difference for temperature (maximum and minimum) and daily relative humidity in different environments has been tested using the One-Way Analysis Of Variance (ANOVA); and then the day to day variability of temperature has been calculated based on a DTD and ΔDTD equations for all three environments. Analysis of the data has been conducted using Excel and R software.
Results and discussion
The difference between the mean temperature of urban and suburban environments in our study area is around 1°C. This difference between urban and green environments is around 1.8°C. The mean relative humidity in the urban and green environments is minimum (67%) and maximum (77%), respectively. Day to day temperature variation of daily temperature DTD (tmean) and temperature maximum DTD(tmax) in the urban environment is higher than those of suburban and green environments, but the day to day temperature variation of daily temperature minimum DTD(tmin) is less than those of the two other environments. The difference of DTD (tmax) and DTD (tmin) in the urban environment is higher than that of the two other environments and is nearly zero for the green environment.  These values indicate higher variation of the daily temperature in the urban and a very small difference in the daily and nightly temperatures variation for the green environment. The results of this research have demonstrated that the heat island not only affects the temperature in Babol city, but also influences its day to day temperature variation.
The results of this research have indicated the impacts of urbanization on climatic parameters in particular temperature and humidity. The results have also revealed that the green environment can play an important role on the climate change of Babol city.   


Main Subjects

اسکورو، ژ. (۱۳۸۷). اقلیم و شهر، ترجمة کاظم جاجرمی، چ2، تهران: مؤسسة چاپ و انتشارات اندیشه‏های گوهربار.
رمضانی، ب. و دخت‏محمد، س.م. (۱۳۸۹). شناخت محدودة مکانی تشکیل جزیرة گرمایی شهر رشت، مجلة پژوهش و برنامه‏ریزی شهری، 1(1): 45ـ64.
رنجبر سعادت‏آبادی، ع.؛ آزادی، م.؛ علی‏اکبری بیدختی، ع. و صادقی حسینی، ع. (۱۳۸۴). مطالعة موردی جزیرة گرمایی تهران و شبیه‏سازی عددی آن، مجلة فیزیک زمین و فضا، ۱: ۶۳-۸.
شمسی‏پور، ع.؛ مهدیان ماه‏فروزی، م.؛ اخوان، ه. و حسین‏پور، ز. (۱۳۹۱). واکاوی جزیرة گرمایی شهر تهران، مجلة محیط‏شناسی، 38(40): ۵۶-۴۵.
عزیزی، ق.؛ شمسی‏پور، ع.ا.؛ مهدیان ماه‏فروزی، م. و میری، م. (۱۳۹۲). تأثیرپذیری شدت جزیرة گرمایی شهری تهران از الگوهای همدیدی جو، مجلة محیط‏شناسی، ۳۹(4): 55ـ۶۶.
غضنفری مقدم، م.ص.؛ علیزاده، ا.؛ ناصری مقدم، م. و فرید حسینی، ع. (۱۳۸۹). بررسی اثر جزیرة گرمایی شهری بر روند تغییرات ریزش‏های جوی مشهد، نشریة آب‏وخاک، 24(2): ۳۶۶-۳۵۹.
کاویانی، م. (۱۳۸۰). میکروکلیماتولوژی، تهران: سمت.
موسوی بایگی، م.؛ اشرف، ب.؛ فرید حسینی، ع. و میان‏آبادی، آ. (۱۳۹۱). بررسی جزیرة حرارتی شهر مشهد با استفاده از تصاویر ماهواره‏ای و نظریة فرکتال، مجلة جغرافیا و مخاطرات محیطی، 35ـ۴۹.
Arifwidodo, S.D. and Tanaka, T. (2015). The Characteristics of Urban Heat Island in Bangkok, Thailand, Procedia - Social and Behavioral Sciences, 195: 423-428.
Azizi, Gh.; Shamsipur, A.; Mahdian Mahfroozi, M. and Miri, M. (2013). Effect of intensity of Tehran Heat Island from synoptic patterns of atmosphere, Journal of Environmental Studies, 39(4): 55-66.
Baik, J.J. and Chun, H.Y. (1997). A dynamical model for urban heat islands, Boundary-Layer Meteorology, 83: 463-477.
Brandsma, T. and Wolters, D. (2012). Measurement and statistical modeling of the urban heat island of the city of Utrecht (Netherlands), Journal of Applied Meteorology and Climatology, 51(6): 1046-1060.
Cotton, W.R. and Pielke, R.A. (1995). Human Impacts on Weather and Climate, Cambridge University Press, pp. 288.
Escourror, G. (1999). Le climat et la ville, [MG1] Translated by Kazim Jajarmi, Second edition, Goharbar Institutes of Publishing, Tehran.
Ghazanfari Moghadam, Ms.; Alizadeh, A.; Naseri Moghaddam, M. and Farid Hosseini, A. (2010). Investigating the Effect of Urban Heat Island on the Trend of precipitation changes in Mashhad, Water and Soil Journal, 24(2): 366-359.
Gough, W.A. (2008). Theoretical considerations of day-to-day temperature variability applied to Toronto and Calgary, Canada data. Theoretical and Applied Climatology, 94(1-2): 97-105.
Hoverter, S.P. (2012). Adapting to urban heat: a tool kit for local governments, Georgetown Climate Center, PP. 81.
Kalnay, E. and Magi, C. (2003). Impact of Urbanization and Land-Use Change on Climate, Nature, 423: 528-531.
Karl, T.R.; Knight, R.W. and Plummer, N. (1995). Trends in high-frequency climate variability in the twentieth century, Nature, 377: 217-220.
Kaviani, M. (2001). Microclimatology, Tehran: Samt.                   
Kim, Y.H. and Baik, J.J. (2005). Spatial and Temporal Structure of the Urban Heat Island in Seoul, Journal of Applied Meteorology, 44(5): 591-605.
Lokoshchenko, M.A.; Korneva, I.A.; Kochin, A.V.; Dubovetskiy, A.Z.; Kulizhnikova, L.K. and Ye, R.P. (1991). Vertical range of urban heat island in Moscow, PP. 3-8.
Mousavi Bayige, M.; Ashraf, B.; Farid Hosseini, A. and Meyanabadi, A. (2012). Study of the Heat Island of Mashhad using satellite imagery and fractal theory, Geography and environmental hazards journal, PP. 35-49.
Oke, T.R. (1973). City size and the urban heat island, Atmospheric Environment, 7(8): 769-779.
Paulina, W.; Poh-Chin, L. and Melissa, H. (2015). Temporal Statistical Analysis of Urban Heat Islands at the Microclimate Level, Procedia Environmental Sciences, 26(June): 91-94.
Ramezani, B. and Dokht Muhammad, SA. (2000). Recognition of the Spacing Range of Heat Island Formation in Rasht, Journal of Urban Planning Research, 1(1): 64-45.
Ranjbar Saadatabadi, A.; Azadi, M.; AliAkbari Bidokhti, A. and Sadegh Hosseini, A. (2005). Case Study of Tehran Thermal Island and its Numerical Simulation, Journal of Physics of Earth and Space, 1: 63-8.
Shamsipur, A.; Mahdian Mahfroozi, M.; Akhavan, H. and Hosseinpour, Z. (2012). Examination of Heat Island of Tehran, Journal of Environmental Studies, 38(40): 56-45.
Solecki, W.D.; Rosenzweig, C.; Pope, G.; Chopping, M. and Goldberg, R. (2004). Environmental Assessment and Risk Analysis Element Research Project Summary Urban Heat Island and Climate Change: An Assessment of Interacting and Possible Adaptations in the Camden, New Jersey Region, Strategies, PP. 1-5.
Tam, B.Y.; Gough, W.A. and  Mohsin, T. (2015). The impact of urbanization and the urban heat island effect on day to day temperature variation, Urban Climate, 12: 1-10.
Wang, Y.; Berardi, U. and Akbari, H. (2015). The Urban Heat Island Effect in the City of Toronto, Procedia Engineering, 118: 137-144.
Wu, F.T.; Fu, C.; Qian, Y.; Gao, Y. and Wang, S.Y. (2016). High-frequency daily temperature variability in China and its relationship to large-scale circulation, International Journal of Climatology.
Yamamoto, Y. (2005). Measures to Mitigate Urban Heat Islands, Environmental and Energy Research Unit, Quaterly Review, 18: 65-83.