بالا آمدن سطح آب خلیج فارس و دریای عمان تحت تأثیر تغییر اقلیم در دوره‌های آتی

نوع مقاله : مقاله کامل

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مهندسی آب، پردیس ابوریحان دانشگاه تهران

2 دانشیار گروه مهندسی آب، پردیس ابوریحان، دانشگاه تهران

3 استادیار گروه آموزشی فیزیک فضا، مؤسسة ژئوفیزیک دانشگاه تهران

4 دانشیار پژوهشگاه ملی علوم اقیانوسی و جوی

چکیده

بررسی‏ها نشان داده است که تغییرات تراز آب دریا در مقیاس محلی نسبت به تغییرات آن در مقیاس جهانی (میانگین تراز عمومی دریاها) متفاوت است. از آنجا که کاربرد مقادیر میانگین جهانی افزایش تراز آب در اجرای تحقیقات موجب بروز خطا در برآورد میزان دقیق آب‏گرفتگی و آسیب‏پذیری خطوط ساحلی است، برآورد میزان دقیق افزایش تراز آب با بهره‏گیری از مدل‏های AOGCM برای برنامه‏ریزی‏ و مدیریت نواحی ساحلی ضروری است. در طی این پژوهش، با استفاده از مدل SIMCLIM به محاسبة تغییرات تراز آب تا سال 2100 میلادی در منطقة خلیج فارس و دریای عمان تحت سناریوهای انتشار گاز گلخانه‏ای پرداخته شده است. نتایج نشان می‏دهد که تراز آب در این منطقه تا سال 2100، تحت سناریوهای RCP2.6، RCP4.5، RCP6.0، و RCP8.5 به‏ترتیب 84.18، 86.62، 89.06، و 181.3 سانتی‏متر خواهد بود. در حالی‏ که مقدار تغییرات تراز عمومی آب به‏ترتیب تحت سناریوهای RCP حدود 61، 71، 73، و 98 سانتی‏متر در سال 2100 پیش‏بینی شده است. مقایسة این مقادیر، لزوم محاسبة مقادیر تغییرات تراز محلی آب در منطقه را برای برآورد‏های دقیق‏تر از میزان آسیب‏پذیری سواحل به آب‏گرفتگی در دوره‏های آتی را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sea Level Rise in Persian Gulf and Oman Sea Due to Climate Change in the Future Periods

نویسندگان [English]

  • Maryam Irani 1
  • Alireza Massah Bavani 2
  • Asghar Bohluly 3
  • Hamid Alizadeh Katak Lahijani 4
1 MSc in Water Resources Engineering, College of Aboureyhan, University of Tehran
2 Associate Professor of climatology, College of Aboureyhan, University of Tehran
3 Assistant Professor of Geophysics, University of Tehran
4 Associate Professor of atmospheric science, Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
چکیده [English]

Introduction
Global mean sea level change due to climate change is resulted from changes in the interaction of its associated components in long periods of time. The difference between regional and global predictions of sea level change depends on manifestation of this phenomenon in terms of climatic and hydrological conditions of the regions. Since the rising in sea level in the near future is a serious threat to coastal communities, it is essential to estimate the increase in water level during the coming period. Sea level changes on a large spatial and temporal scale are created by some factors, including thermal expansion, ice melting and etc., resulted from the climate change. Sea level change is affected by two main causes: (1) volume change due to density of sea water, and (2) mass change due to water exchange with atmosphere and land through precipitation, evaporation, river runoff and ice melting. Regional sea level change may differ substantially from a global average. This shows complex spatial patterns resulted from ocean dynamic processes, movements of the sea floor, and changes in gravity due to water mass redistribution (land ice and other terres­trial water storage) in the climate system. In the period 2081–2100 compared with the that of 1986–2005, global mean sea level rise is likely (medium confi­dence) to be in the 5 to 95% of projections from process-based models. This gives ranges of 0.26 to 0.55 meter, 0.32 to 0.63 meter, 0.33 to 0.63 meter, and 0.45 to 0.82 meter for RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively. In this study, an accurate assessment of the sea level changes due to climate change in coastal zones of Persian Gulf and Oman Sea has been estimated in the future, for the first time.
 
Materials and Method
This study estimates the amount of increase in sea level change using 24 AOGCM models suggested in fifth IPCC report, under the new scenarios of greenhouse gas emissions. In this study, sea level change in Persian Gulf and Oman Sea has been calculated by SIMCLIM model under climate scenarios by 2100 A.D. For this study, the SIMCLIM model has been applied based on different general circulation models, under RCP scenarios for 1995 to 2100. The regional sea level change has been estimated for this case study. In the SIMCLIM model the amount of water level change was estimated for a period based on rising temperatures leading to thermal expansion and polar ice melting. In this model, the spatial resolution is about 2.5° × 2.5° kilometer in global scales, and for regional sea level is about 0.1°
 
Results and discussion
To compare the increase in water level in the regional scale to the global mean sea level, the difference in water level is based on AOGCM models. The difference in predictions during 2081-2100 is compared with 2046-2065. This shows that regional sea level change during the same time periods is different from each other. In fact, this is changing with different rates and sea level changes more quickly and will be increased overtime. Predicted values under the RCP 8.5 scenario shows higher difference compared with the mean sea level change, among other RCP scenarios. According to regional predictions of sea level in this case study, the amount of change in the water level is about 11 cm under the RCP 8.5 scenario and about 6 cm under the RCP 2.6 scenario by 2100. To investigate regional sea level changes under different scenarios, the amount of sea level change based on ensembles of AOGCM was considered as the best estimate. The predicted values show that the increase in the water level in the second and third 25 years after 2020 is growing at a faster rate compared with the first 25 years after 2020. The rate of increase in the water level during the 2075 to 2100 is growing at a faster rate than other periods of the time. 
 
Conclusion
The results of this research have indicated that sea level in this region under RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios will be 84.18, 86.62, 89.06 and 181 cm, respectively, by 2100. The values of general sea level change have been predicted about 0.61, 0.71, 0.73 and 0.98 cm per year under RCP scenarios, respectively. Comparison of these values shows the necessity of more accurate coast vulnerability estimation to flooding in the future.

کلیدواژه‌ها [English]

  • Sea level change
  • climate change
  • regional sea level change
طرح ملی تغییر آب و هوا ) 1394.( دومین گزارش ملی تغییر آب و هوا، بخش ارزیابی آسیب‏پذیری و سازگاری، زیربخش نواحی ساحلی.
ترابی آزاد، م. و هنرمند، م. (1395). بررسی تغییرات تراز دریا در اثر پارامترهای هواشناختی با استفاده از مدل‏های آماری در سواحل شمالی خلیج‏فارس، پژوهش‏‏های علوم و فنون دریایی، 1: 53-65.
ترابی آزاد، م. و زاهدی، ر. (1382). نقش تغییر اقلیم بر جریان‏های خلیج فارس، فصل‏نامة علوم و تکنولوژی محیط زیست، 4: 43-52.
Appeaning Addo, K.; Larbi, L.; Amisigo, B. and Ofori-Danson, P.K. (2011). Impacts of coastal inundation due to climate change in a cluster of urban coastal communities in Ghana, West Africa, Remote Sensing, 3(9): 2029-2050.
Avsar, N.B.; Kutoglu, S.H.; Erol, B. and Jin, S. (2015). Coastal risk analysis of the Black Sea under the sea level rise, FIG Working Week.
Avsar, N.B.; Jin, S.; Kutoglu, H. and Gurbuz, G. (2016). Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations, Geodesy and Geodynamics, 7(1): 50-55.
Carson, M.; Köhl, A.; Stammer, D.; Slangen, A.; Katsman, C.; Van de Wal, R.; Church, J. and White, N. (2016). Coastal sea level changes, observed and projected during the 20th and 21st century, Climatic Change, 134(1-2): 269-281.
Chonghua, Yin; Yingpeng, Li. and Urich, P. (2013). SimCLIM 2013 data manual, Vol. 35, pp. 1-35.
Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; R. S. Nerem. and P. D. Nunn. (2013). Sea level change, PM Cambridge University Press.
Cubasch, U.; Wuebbles, D.; Chen, D.; Facchini, M.C.; Frame, D.; Mahowald, N. and Winther, J.G. (2013). Introduction In: Climate Change: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F.; D. Qin.; G.-K. Plattner.; M. Tignor.; S.K. Allen.; J. Boschung.; A. Nauels.; Y. Xia, V. Bex. and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Demirkesen, A.; Evrendilek, F. and Berber, S. (2008). Quantifying coastal inundation vulnerability of Turkey to sea-level rise, Environmental Monitoring and Assessment, 138(1-3): 101-106.
IPCC (2013). Fifth Assessment Report (AR5): Church, J.A.; P.U. Clark.; A. Cazenave.; J.M. Gregory.; S. Jevrejeva.; A. Levermann.; M.A. Merrifield.; G.A. Milne.; R.S. Nerem.; P.D. Nunn.; A.J. Payne.; W.T. Pfeffer.; D. Stammer and A.S. Unnikrishnan, 2013: Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F.; D. Qin, G.-K. Plattner.; M. Tignor.; S.K. Allen.; J. Boschung.; A. Nauels.; Y. Xia.; V. Bex. and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
IPCC (2013a). Annex III: Glossary [Planton, S. (ed.)]. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F.; D. Qin.; G.-K. Plattner.; M. Tignor.; S. K. Allen.; J. Boschung.; A. Nauels.; Y. Xia, V. Bex. and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1447–1466, doi:10.1017/CBO9781107415324.031.
IPCC )2013b.( Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F.; D. Qin.; G.-K. Plattner.; M. Tignor.; S. K. Allen.; J. Boschung.; A. Nauels.; Y. Xia.; V. Bex. and P. M. Midgley (eds.)]. Cambridge Univer‏sity Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., doi:10.1017/CBO9781107415324.
IPCC )2014a.( Annex II: Glossary [Mach, K.J.; S. Planton. and C. von Stechow (eds.)]. In: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, pp. 117-130.
IPCC )2014b.( Annex II: Glossary [Agard, J.; E. L. F. Schipper.; J. Birkmann.; M. Campos.; C. Dubeux.; Y. Nojiri.; L. Olsson.; B. Osman-Elasha.; M. Pelling.; M. J. Prather.; M. G. Rivera-Ferre.; O. C. Ruppel.; A. Sallenger.; K. R. Smith.; A. L. St. Clair.; K. J. Mach.; M. D. Mastrandrea. and T. E. Bilir (eds.)]. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V. R.; C. B. Field.; D. J. Dokken.; M. D. Mastrandrea.; K. J. Mach.; T. E. Bilir.; M. Chatterjee.; K. L. Ebi.; Y. O. Estrada.; R. C. Genova.; B. Girma.; E. S. Kissel.; A. N. Levy.; S. MacCracken.; P. R. Mastrandrea. and L. L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1757-1776.
Meyssignac, B. and Cazenave, A. (2012). Sea level: a review of present-day and recent-past changes and variability, Journal of Geodynamics, 58: 96-109.
Michaelreynolds, R. (1993). Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman- Results from the Mt Mitchell expedition, Marine Pollution Bulletin, 27: 35-59.
Milne, G.A.; Gehrels, W.R.; Hughes, C.W. and Tamisiea, M.E. (2009). Identifying the causes of sea-level change, Nature Geosci, 2(7): 471-478.
Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; Meehl, G.A.; Mitchell, J.F.; Nakicenovic, N.; Riahi, K.; Smith, S.J.; Stouffer, RJ.; Thomson, A.M.; Weyant, J.P. and Wilbanks, T.J. (2010). The next generation of scenarios for climate change research and assessment, Nature, 463:747-756.
Moss, R.H.; Nakicenovic, N. and O'Neill, B. (2008). Towards new scenarios for analysis of emissions, climate change, impacts, and response strategie.
Nicholls, R.J. and Cazenave, A. (2010). Sea-Level Rise and Its Impact on Coastal Zones, Science, 328(5985): 1517-1520.
Pardaens, A.K.; Lowe, J.A.; Brown, S.; Nicholls, R.J. and de Gusmão, D.) 2011.( Sea-level rise and impacts projections under a future scenario with large greenhouse gas emission reductions, Geophysical Research Letters, 38(12): n/a-n/a.
Saleem Khan, A.; Ramachandran, A.; Usha, N.; Punitha, S. and Selvam, V. (2012). Predicted impact of the sea-level rise at Vellar–Coleroon estuarine region of Tamil Nadu coast in India: Mainstreaming adaptation as a coastal zone management option, Ocean & Coastal Management, 69: 327-339.
Simclim Essentials (2013). Training Book 1, Version 3.0.1: pp.1-126.
Stammer, D.; Cazenave, A.; Ponte, R.M. and Tamisiea, M.E. (2013). Causes for Contemporary Regional Sea Level Changes, Annual Review of Marine Science, 5(1): 21-46.
Teng, J.; Vaze, J.; Chiew, F.H.; Wang, B. and Perraud, J.-M. (2012). Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff, Journal of Hydrometeorology, 13(1): 122-139.
Vafaee, F.; Harati, S.A.N. and Sabbaghian, H. (2012). Investigation of Coastal Inundation Due to a Rise in Sea Level (Temporary and Permanent), Original Research, Polish Journal of Environmental Studies, 21(1): 209-217.
Van Vuuren, D.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.; Kram, T.; Krey, V.; Lamarque, J.F.; Masui, T.; Meinhausen, M.; Nakicenovic, N.; Smith, S. and Rose, S.K. (2011). The representative concentration pathways: An overview, Climatic Change, 109: 5-31.
Warric, R.A. (2009). Using SimCLIM for modelling the impacts of climate extremes in a changing climate: a preliminary case study of household water harvesting in Southeast Queensland, 18th World IMACS/ MODSIM Congress, Cairns, Australia.