مقایسۀ آسیب‌پذیری زیرحوضه‌های آبخیز سامیان بر اساس تغییرات مؤلفه‌های اقلیمی

نوع مقاله : مقاله کامل

نویسندگان

1 کارشناس ‏‏ارشد مهندسی آبخیزداری، دانشکدة کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

2 استادیار گروه منابع طبیعی و عضو پژوهشکدة مدیریت آب، دانشکدة کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

3 دانشیار گروه منابع طبیعی و عضو پژوهشکدة مدیریت آب، دانشکدة کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

چکیده

پژوهش حاضر با هدف ارزیابی آسیب‏پذیری اقلیمی آبخیز سامیان در استان اردبیل انجام شد. در این راستا، نخست شاخص‏های مهم اقلیمی و فیزیکی در سطح 27 زیرحوضه محاسبه و سپس به تعیین آستانه‏ها اقدام شد. نتایج نشان داد که شاخص‏های فصل خشک و مرطوب به‏ترتیب در محدودة 05/48 (زیرحوضة 21) تا 63/86 (زیرحوضة 12) و 99/254 (زیرحوضة 16) تا 83/130 (زیرحوضة 3) میلی‏متر متغیرند. همچنین، شاخص‏های دورة سرد و گرم به‏ترتیب بین محدودة 87/5- (زیرحوضة 8) تا 07/2 (زیرحوضة 3) و 03/13 (زیرحوضة 8) تا 96/16 (زیرحوضة 3) درجة سانتی‏گرادند. شاخص‏های حداکثر سرعت باد بین محدودة 20/34 (زیرحوضة 8) تا 48/78 (زیرحوضة 1) کیلومتر بر ساعت، ارتفاع از سطح دریا بین محدودة 1326 (زیرحوضة 21) تا 2596 (زیرحوضة 14) متر، و SPI در محدودة 0006/0 (زیرحوضة 16) تا 0111/0 (زیرحوضة 8) نیز قرار گرفتند. در مجموع، ضمن تأیید تغییرپذیری مکانی زیاد شاخص‏های آسیب‏پذیری در دورة زمانی مورد مطالعه، نتایج حاصل از تلفیق همة شاخص‏ها نشان داد که زیرحوضه‏های 15، 16، و 17 واقع در غرب دارای آسیب‏پذیری خیلی‏ زیاد و زیرحوضه‏های 20، 21، و 24 واقع در بخش‏هایی از شمال و مرکز دارای کمترین آسیب‏پذیری‏اند و در طبقة برگشت‏پذیر از لحاظ نقطة آسیب‏پذیری کلی (OVP) قرار دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Vulnerability Comparison of Samian Sub-watersheds based on Climate Change Components

نویسندگان [English]

  • Shirin Zareie 1
  • Zeinab Hazbavi 2
  • Raoof Mostafazadeh 3
  • Abazar Esmaliouri 3
1 University of Mohaghegh Ardabili, Ardabil, Iran
2 Assistant Professor, Department of Natural Resources, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Iran
3 Assistant Professor, Department of Natural Resources, University of Mohaghegh Ardabili
چکیده [English]

Extended Abstract
Introduction
Climate change related issues increasingly received significant attentions in recent years due to its consequences in different viewpoints of economic, social and environment. In this regard, drawing guidance from vulnerability assessment as a process for characterization of watersheds against climatic components could provide strategic implications of climate change. Generally, vulnerability is considered as an ecosystem susceptibility state against to harm from exposure to stressors and from the lack of capability to adapt. Watersheds are greatly different in terms of their supporting values, exposure to climatic changes, and sensitivity. Therefore, understanding these differences could be helpful for the set priorities and selection of management attitudes. Depth understanding of climatic vulnerability changes in different environments is emphasized by the Intergovernmental Panel on Climate Change (IPCC). Not all parts of the specific watershed are equally vulnerable to climatic components. It is expected some parts are supported by more water resources, and some are inherently more sensitive to climate change. Moreover, ascertaining the magnitude of vulnerability in areas undergoing such changes is highly important for land managers and decision makers. The vulnerability assessments provide managerial recommendations to appropriately predict and respond to projected climate-hydrologic-land cover changes. Towards this important, the present study was planned as a case study to assess the climatic vulnerability of the Samian Watershed in Ardabil Province based on some important climatic and physiographic indices.

Materials and methods
The present study was conducted in the Samian Watershed (ca. 4235 sq. km) with 27 sub-watersheds located in central of Ardabil Province, Iran. The mean annual precipitation in the study watershed is about 312.25 mm, with temperature of 8.2 °C. A key component to implement a successful indicator-based approach is selecting the most reliable and suitable indicators for vulnerability assessment. Based on reviewing of the literature, to assess the climatic vulnerability of Samian Watershed, eight important indicators from climatic and physiographic aspects including dry and wet seasons, cold and warm periods, maximal wind speed, altitude above sea level and standardized precipitation index (SPI) were used. Thence, the Kolmogorov-Smirnov test was applied to determine the appropriate thresholds to distinguish the different classes of each used indicators. To determine the indicators related to rainfall, temperature and wind, the data of 16 stations which distributed through whole study watershed for the period of 1989–2014 were provided and analyzed. In addition, the digital elevation model (DEM) and Drought Indices Package (DIP) were applied for indicators of altitude above sea level and standardized precipitation index (SPI), respectively. In overall, all indicators was classified between one to five scales based on the vulnerability intensity. Thereafter, the overall vulnerability point (OVP) were obtained for whole study watershed. Totally, all study climatic and physiographic indicators as well as overall vulnerability point (OVP) were mapped and interpreted through sub-watersheds under consideration. The interpolations were made using the Inverse Distance Weighted (IDW) and Thiessen processes in the ArcGIS 10.6.

Results and discussion
The results showed that the mean vulnerability of Samian Watershed based on climatic variations of dry season, wet season, cold period, warm period, maximal wind speed, altitude above sea level and SPI index were 65.36 mm, 194.86 mm, 0.51 °C, 15.71 °C, 55.66 Km h-1, 1707 m and 0.0026. The standard deviation of these indicators in that respect were obtained 9.69, 34.02, 1.57, 0.83, 15.23, 304 and 0.0020. The dry season index in the Samian Watershed area was varied in the range of 48.05 (sub-watershed 21) to 86.63 (sub-watershed 12) mm and the wet season index was within the range of 254.99 (sub-watershed 16) to 130.83 (sub-watershed 3) mm. The cold season index also ranged between -5.87 (sub-watershed 8) to 2.07 (sub-watershed 3) °C and the warm season index fall in the range of 13.03 (sub-watershed 8) to 16.96 (sub-watershed 3) °C. Furthermore, the maximum wind speed index varied between the ranges of 34.20 (Sub-watershed 8) to 78.48 (sub-watershed 1) Km h-1, altitude above sea level was between 1326 (sub-watershed 21) to 2596 (sub-watershed 14) and SPI index within the range of 0.0006 (sub-watershed 16) up to 0.0111 (sub-watershed 8). In addition, the results showed that among 27 sub-watersheds, sub-watersheds 15, 16 and 17 were grouped in high class and the sub-watersheds 20, 21 and 24 were grouped in resilient class in terms of overall vulnerability point (OVP). Besides, the variation of spatial distribution in the climatic vulnerability was clearly observed for Samian Watershed. However, main parts of the watershed is distinguished vulnerable. This findings confirmed the dynamics of the used indicators in evaluation of Samian Watershed vulnerability. In addition, the results showed the road maps for policy managers to provide meaningful management solutions for each sub-watershed based on every study indicators. The results of the research, while highlighting the importance of the effects of climate change, are necessary for their application in applying appropriate management and adaptation to climate change in the future policies of the watershed management. Therefore, the results can be used more as inputs for developing a comprehensive and integrated framework for climate change mitigation and adaptation solutions. In addition, the results of this study could be used to reduce or control the climate change risks in the Samian Watershed area.

Conclusion
In the present research, the climatic vulnerability of Samian Watershed, Iran were assessed in terms of some significant climate and physical indicators. The results verified the spatial variations of vulnerability in terms of each study indicators and overall vulnerability through 27 sub-watersheds. This paper includes powerful tools and example of watershed-scale vulnerability assessments that could be a basis for jurisdictions around other places of Iran and the world. The results of the research, while highlighting the importance of the effects of climate change, are applicable to develop appropriate managerial and adaptation strategies in terms of climate change. Along with vulnerability increasing in different conditions, it is suggested to adjust and use more indicators with the addition of socioeconomic considerations and non-climatic factors. The findings also inform the associated organizations to give more attention to collect comprehensive data bank and facilitate equipping the watersheds for collecting high resolutions information related to vulnerability assessment in future studies.
Keywords: Climate change, Land degradation, Resilience, Watershed vulnerability

کلیدواژه‌ها [English]

  • Climate change
  • Land degradation
  • Resilience
  • Watershed vulnerability
اسلامی، ح.؛ صفار، س.؛ جامع، م. و قاسمی، ص. (۱۳۹۵). بررسی مدل درون‏یابی معکوس وزنی فاصله (IDW) در پهنه‏بندی بارش (مطالعة موردی: استان خوزستان)، همایش ملی آب و سازه‏های هیدرولیکی، دزفول، دانشگاه آزاد اسلامی واحد دزفول.
افخمی، م. و نصیری صالح، ف. (1394). ارزیابی عملکرد مدل‏های هیدرولوژیکی توزیعی و یک‏پارچه در شبیه‏سازی متوسط روزانة دبی جریان در حوضة آبریز رودخانة قره‏سو اردبیل، نشریة عمران مدرس، ۱۵: ۳۱-40.
امینی، ح.؛ اسمعلی عوری، ا.؛ مصطفی‏زاده، ر.؛ شرری، م. و ذبیحی، م. (1398). واکنش خشک‏سالی هیدرولوژیک در جریان تنظیمی رودخانه تحت‏تأثیر احداث سد در استان اردبیل، فیزیک زمین و فضا، ۴۵(۲): 473-486.
حجازی‏زاده، ز.؛ علیجانی، ب.؛ سلیقه، م.؛ دانایی ‏فرد، ح. و احمدی، ا. (1394). محاسبة شاخص آسیب‏پذیری اقلیمی مبتنی بر مدل ضربی- نمایی استان سیستان و بلوچستان، تحقیقات کاربردی علوم جغرافیایی، ۱۵(۳۶): 73-96.
حق‏ندری، ف.؛ افضلی، ا. و میرزایی، ر.ا. (1396). مروری بر مبانی آسیب‏پذیری با تأکید بر مؤلفه‏های آسیب‏پذیری محیط زیستی، چهارمین کنفرانس بین‏المللی برنامه‏ریزی و مدیریت محیط زیست، دانشکدة محیط زیست دانشگاه تهران.
حمزه‏نژاد، س.؛ همدمی، ن.؛ نظرنژاد، ح. و خرمی، ک. (1397). پهنه‏بندی خشک‏سالی حوزة آبخیز قره‏سو با استفاده از شاخص SPI و IDW، سیزدهمینهمایشملیعلومومهندسیآبخیزداریایران وسومینهمایشملیصیانتازمنابعطبیعیومحیطزیست، دانشگاه محقق اردبیلی،10 و 11 مهرماه 1397، دانشگاه محقق اردبیلی.
رضایی بنفشه درق، م.؛ جوان، خ. و زینالی، ب. (1390). بررسی روند تغییرات سرعت باد در شمال غرب ایران، جغرافیای طبیعی، ۴(۱۳): 27-36.
زارعی، ش.؛ مصطفی‏زاده، ر.؛ حزباوی، ز. و اسمعلی عوری، ا. (1397). رویکردها و شاخص‏های مختلف ارزیابی آسیب‏پذیری بوم‏سازگان، توسعه و محیط زیست، پذیرش‏شده برای چاپ.
زارعی، ش.؛ مصطفی‏زاده، ر.؛ حزباوی، ز. و اسمعلی عوری، ا. (1398). تحلیل آسیب‏پذیری اقلیمی بر اساس تغییرپذیری فصل‏های خشک و مرطوب در زیرحوزه‏های آبخیز سامیان، استان اردبیل، سومین کنفرانس هیدرولوژی مناطق نیمه‏خشک با محوریت آب، انسان، طبیعت، جهاد دانشگاهی استان کردستان.
 علایی، ن.؛ مصطفی‏زاده، ر.؛ اسمعلی عوری، ا.؛ شرری، م. و حزباوی، ز. (1398). تحلیل حساسیت اکولوژیکی حوزة آبخیز کوزه‏تپراقی، استان اردبیل، سومین کنفرانس هیدرولوژی مناطق نیمه خشک با محوریت آب، انسان، طبیعت، جهاد دانشگاهی استان کردستان، 3 و 4 اردیبهشت 1398.
محمدخانی، م. و جمالی، س. (1394). ارزیابی میزان آسیب‏پذیری ایران در مواجهه با تغییر اقلیم، سد و نیروگاه برقآبی، ۲(۴): 54-65.
مهدوی، م. (1388). هیدرولوژی کاربردی، ج ۲،تهران: مؤسسة چاپ و انتشارات دانشگاه تهران.
مهری، س.؛ مصطفی‏زاده، ر.؛ اسمعلی‏عوری، ا. و قربانی، ا. (1396). تغییرات زمانی و مکانی شاخص جریان پایه در رودخانه‏های استان اردبیل، فیزیک زمین و فضا، ۴۳(۳): ۶۲۳-634.
نقدی، ر.؛ شایان‏‏نژاد، م. و ساداتی‏نژاد، س.ج. (1389). مقایسة روش‏های مختلف تخمین داده‏های گمشدة دبی ماهانةحوزة آبخیز کارون بزرگ، پژوهش‏نامة مدیریت حوزة آبخیز، ۱(۱): 59-73.
یاوری، ح.؛ کرمپور، م. و یاراحمدی، د. (1398). تحلیل فضایی آسیب‏پذیری زیست‏اقلیمی شهر کرمانشاه در مواجهه با مخاطرة اقلیمی موج گرم، جغرافیا و پایداری محیط (پژوهش‏نامة جغرافیایی)، ۳۰(9): 37-50.
Adedeji, O.; Reuben, O. and Olatoye, O. (2014). Global climate change, Journal of Geoscience and Environment Protection, 2: 114-122.
Afkhami, M. and Nasiri Saleh, F. (2015). Performance evaluation of distributed and integrated hydrological models in daily simulation of current flow in Ardebil Gharesoo River Basin, Modares Civil Engineering Journal, 15: 31-40.
Ahsan, M.N. and Warner, J. (2014). The socioeconomic vulnerability index. A pragmatic approach for assessing climate change led risks–A case study in the South-Western Coastal Bangladesh, International Journal of Disaster Risk Reduction, 8: 32-49.
Alaei, N.; Mostafazadeh, R.; Esmaili Ouri, A.; Sharrari, M. and Hezbavi, Z. (2019). Ecological Sensitivity Analysis of KoozehTopraghi Watershed, Ardabil Province. Third National Conference on Hydrology of Iran, 2019-04-23 and 24.
Amini, H.; Asmly Ouri, A.; Mostafazadeh, R.; Sharari, M. and Zabihi, M. (2019). Hydrological drought response to river regulatory impact under dam construction in Ardabil Province, Space and Space Physics, 45(2): 473-486.
De Sherbinin, A.; Schiller, A. and Pulsipher, A. (2007). The vulnerability of global cities to climate hazards, Environment and Urbanization, 19(1): 39.
Ericksen, P.J. (2008). What is the vulnerability of a food system to global environmental change Ecology and Society, 13(2): 18.
Erkossa, T.; Wudneh, A.; Desalegn, B. and Taya, G. (2015). Linking soil erosion to on-site financial cost: lessons from watersheds, In: The Blue Nile Basin,Solid Earth, 6: 765-774.
Eslami, H.; Saffar, S.; Jamee, M. and Qasemi, S. (2016). Investigation of interval weighted distance interpolation model (IDW) in precipitation zones (Case study: Khuzestan Province). National Conference on Hydraulic Water and Structures, Dezful, Islamic Azad University of Dezful, P. 7.
Füssel, H.M. and Klein, R.J.T. (2006). Climate change vulnerability assessments: an evolution of conceptual thinking, Climatic Change, 75: 301-329.
Füssel, H.M.; Lourenço, T.C.; Capela, T.; Downing, C.; Hildén, M.; Leitner, M.; Marx, A.; Prutsch, A. and Sanderson, M. (2018). National climate change vulnerability and risk assessments in Europe, European Environment Agency, 1: 79.
Haghndari, F.; Afzali, A. and Mirzaei, R.A. (2017). Vulnerability review with emphasis on the elements of environmental vulnerability, Fourth International Conference on Environmental Planning and Management, Faculty of Environment, University of Tehran, P. 14.
Hamzehnejad, S.; Hamdami, N.; Nazarnejad, D. and Khorrami, K. (2018). Drought zoning of Gharasoo Watershed using SPI and IDW indices, 13th National Conference on Watershed Management Science and Engineering and Third National Conference on Conservation of Natural Resources and Environment, Mohaghegh Ardebili University, October 2-3, P. 6.
Hazbavi, Z.; Baartman, J.E.M.; Nunes, J.P.; Keesstra, S.D. and Sadeghi, S.H.R. (2018). Changeability of reliability, resilience and vulnerability indicators with respect to drought patterns, Ecological Indicators, 87: 196-208.
Hejazizadeh, Z.; Alijani, B.; Saligeh, M.; Danae Fard, H. and Ahmadi, A. (2015). Calculation of climate vulnerability index based on multiplicative exponential model of Sistan and Baluchestan Province, Geographical Sciences Applied Research, 15(36): 73-96.
IPCC, Intergovernmental Panel on Climate Change. (2007). Climate change: the physical science basis, In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, PP. 996.
Lardy, R.; Martin, R.; Bachelet, B.; Hill, D.R.C. and Bellocchi, G. (2012). Ecosystem climate change vulnerability assessment framework, International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet, Leipzig, Germany, PP. 777-784.
Mahdavi, M. (2009). Applied Hydrology, Volume II, Tehran: Tehran University Press.
Mehri, S.; Mostafazadeh, R.; Esmaili Ouri, A. and Ghorbani, A. (2017). Temporal and spatial variations of base flow index in Ardabil Rivers, Earth and Space Physics, 43(3): 3634-623.
Maikhuri, R.K.; Rao, K.S.; Patnaik, S.; Saxena, K.G. and Ramakrishnan, P.S. (2003). Assessment of vulnerability of forests, meadows and mountain ecosystems due to climate change, Envis Bulletin Himalayan Ecology, 11(2): 19.
McKee, T.B.; Doesken, N.J. and Kleist, J. (1993). The relationship of drought frequency and duration of time scales. Eighth Conference on Applied Climatology, American Meteorological Society, Jan 17-23, 1993, Anaheim CA, PP. 179-186
Mirchi, A.; Watkins, D. and Madani, K. (2011). Modeling for watershed planning, management, and decision making, Watersheds: Management, Restoration and Environmental Impact, PP. 221-244.
Mirhosseini, M.; Farshchi, P.; Noroozi, A.A.; Shariat, M. and Aalesheikh, A.A. (2018). Changing land use a threat to surface water quality: a vulnerability assessment approach in Zanjanroud Watershed, Central Iran, Water Resources, 45(2): 268-279.
Mirhosseini, M.; Farshchi, P.; Noroozi, A.A.; Shariat, M. and Aalesheikh, A.A. (2018). Changing land use a threat to surface water quality: a vulnerability assessment approach in Zanjanroud Watershed, central Iran, Water Resources, 45(2): 268-279.
Mohammadkhani, M. and Jamali, S. (2015). Assessing Iran's vulnerability to climate change, Dam and Hydroelectric Power Plant, 2(4): 54-65.
Mohammed, M.; Shatil, A. and Das, A. (2019). Global environmental politics and developing nations' climatic vulnerability nexus: a systematic review and meta-analysis, International Conference on Climate Change (ICCC-2019), Dhaka, Bangladesh, PP. 01-03.
Nagdi, R.; Shayan Nejad, M. and Sadatinejad, S.J. (2010). Comparison of different methods of estimation of missing monthly discharge data in Karun Basin, Journal of Watershed Management, 1(1): 59-73.
O’Brien, K.; Eriksen, S.; Schjolen, A. and Nygaard, L. (2004). What’s in a word conflicting interpretations of vulnerability in climate change research, CICERO Working Paper 2004, Vol. 04, CICERO, Oslo University, Oslo, Norway.
Rezaei Banafsheh Dargh, M.; Javan, Kh. and Zeinali, B. (2011). Investigating the trend of wind speed changes in northwestern Iran, Natural Geography, 4(13): 27-36.
Roy, U. and Majumder, M. (2016). Vulnerability of watersheds to climate change assessed by neural network and analytical hierarchy process, Springer Briefs in Water Science and Technology, PP. 89.
Sathyan, A.R.; Funk, C.; Aenis, T.; Winker, P. and Breuer, L. (2018). Sensitivity analysis of a climate vulnerability index - a case study from Indian watershed development programmes, Climate Change Responses, 5(1): 14.
Shahid, Sh. (2010). Modeling drought hazard, vulnerability and risk: a case study of Bangladesh. Ecosystems Research and Development Bureau, 26-28.
Stark, A. (2007). Policymaking for critical infrastructure: a case study on strategic interventions in public safety telecommunications by Gordon A. Gow, Journal of Contingencies and Crisis Management, 15: 65-66.
Sun, D. and Kafatos, M. (2007). Note on the NDVI-LST Relationship and the Use of Temperature-Related Drought Indices over North America, Geophysical Research Letters, 34(L24406): 1-4.
Tiburan Jr., C.; Saizen, I.; Mizuno, K. and Kobayashi, Sh. (2010). Development and application of a geospatial-based environmental vulnerability index for watersheds to climate change, in: The Philippines, Ecosystems Research and Development Bureau, PP. 17-19.
Yavari, H.; Karampour, M. and Yarahmadi, D. (2019). Spatial analysis of Kermanshah city's bioclimatic vulnerability in the face of wave climatic hazard, Geography and Sustainability (Geographical Bulletin), 30(9): 37-50.
Zarei, Sh.; Mostafazadeh, R.; Hazbavi, Z. and Esmaili Ouri, A. (2019). Analysis of climatic vulnerability based on dry and wet seasons variability in the Samian sub-watersheds, Ardabil Province, Third National Conference on Hydrology of Iran, 2019-04-23 and 24.
Zarei, Sh.; Mostafazadeh, R.; Hazbavi, Z. and Esmaili Ouri, A. (2018). Different approaches and indicators of ecosystem vulnerability assessment, Environmental and Development Journal, accepted for publication.