بررسی تأثیر پدیده های دور پیوند در جابجایی تاریخ رخداد اولین و آخرین یخبندان پاییزه و بهاره

نوع مقاله : مقاله کامل

نویسندگان

1 استاد هواشناسی، دانشکدة کشاورزی، دانشگاه بوعلی‏ سینا، همدان

2 کارشناس ارشد هواشناسی کشاورزی، دانشکدة کشاورزی، دانشگاه بوعلی ‏سینا، همدان

3 استادیار هواشناسی، دانشکدة کشاورزی، دانشگاه بوعلی‏ سینا، همدان

چکیده

در این پژوهش اثر نوسانات الگوهای دورپیوند در جابه‏جایی تاریخ‏ رخداد اولین و آخرین یخبندان‏ پاییزه و بهاره بررسی شد. این محاسبات در 12 ایستگاه سینوپتیک کشور برای مدت 31 سال (۱۹۸۵-2015) انجام شده است. برای بررسی همبستگی شاخص‏های دورپیوند و دمای کمینه، از دو سناریو (با و بدون تأخیر زمانی) استفاده شد. تأثیرگذارترین الگوی شناسایی‏شده بر یخبندان دیر‏رس بهاره در مقیاس ماهانه (بدون تأخیر) شاخص NAO- (ضریب همبستگی 767/0) در ماه فوریه و مربوط به ایستگاه اصفهان است و مؤثرترین شاخص اثر‏گذار بر یخبندان زود‏رس پاییزه AMO+ (ضریب همبستگی 732/0) در مقیاس ماهانه (بدون تأخیر) سپتامبر و مربوط به ایستگاه همدان به‏دست آمد. جابه‏جایی تاریخ‏ها در اولین یخبندان پاییزه و آخرین یخبندان بهاره در فاز النینو نسبت به نرمال زودتر و در فاز لانینا نسبت به نرمال دیرتر شروع می‏شود. همبستگی بین فازهای النینو، لانینا، و نرمال با دمای کمینه نشان داد فاز لانینا تأثیر‏گذاری بیشتری در دمای کمینه داشته است. به‏طور کلی، نتایج نشان داد جابه‏جایی تاریخ‏های رخداد اولین و آخرین یخبندان پاییزه و بهاره در ایستگاه‏های موردمطالعه با تعدادی از شاخص‏های دورپیوند مانند AMO، SOI، NAO، AO، و MEI مرتبط است.

کلیدواژه‌ها


عنوان مقاله [English]

The Impact of Teleconnection Phenomena on Shifting the Date of First Autumn and Last )Spring Frost Events

نویسندگان [English]

  • ALIAKBAR SABZIPARVAR 1
  • ZIBA FIROOZMAND 2
  • VAHID VARSHAVIAN 3
1 ِDepartment of Water Science Engineering, Faculty of Agriculture, Bu-Ali Sina Unversity
2 DEPARTMENT OF WATER SCIENCE ENGINEERING, FACULTY IF AGRICULTURE, BU-ALI SINA UNIVERSITY
3 DEPARTMENT OF WATER SCIENCE ENGINEERING, FACULTY OF AGRICULTURE, BU-ALI SINA UNIVERSITY
چکیده [English]

Introduction
Frost and freezing are important and risk generating factor in the agricultural sector of the country. Frost is a phenomenon that at low temperatures which could damage or destruct the plant organs. Various studies by researchers show that last spring frost (LSF) and first autumn frost (FAF) along with gradual global warming have significant impacts on agriculture and natural resources. Teleconnection patterns represent large changes which can periodically alter other atmospheric patterns such as temperature, wind, humidity and precipitation in regional and global scales. The purpose of this study was to investigate the effect of different teleconnection indices on variability of FAF and LSF events during the last 31 years at 12 Synoptic stations of Iran.

Materials and Methods
To detect the relationships between frost events and teleconnection patterns we used two different data sources. As the first source, the screen daily minimum air temperature (Tmin) were used as the frost indicator. We also applied 10 different teleconnection indices in daily and monthly scales. Daily minimum air temperature were obtained from the Iran Meteorological Organization (IRIMO) for the historical period of 1985-2015. The teleconnection indices were also utilized for the same period (http://www.cdo.noaa.gov). After the data quality control, the outlier data were removed from the analysis. Normality of data was evaluated by Kolmogorov-Smirnov test. For time series with normal distribution (P <0.05), the Pearson’s significance test was performed. For other time series, when the normal distribution was not the case, Spearman's nonparametric test was applied.

Results and Discussion
In case of lag-free correlations in the monthly time scale the strongest correlation between teleconnection indices and minimum temperature was observed for NAO- (-0.76), in February for Isfehan Station, which can cause a delay in occurrence of last spring frost. By applying the time lag to the correlation, the strongest correlation was found for AMO+ with time lag of 11 month. In seasonal time scale, the strongest lag-free correlations were found for AO-during the last spring frost (LSF). By applying time lag-correlation, the strongest correlation was evident between Tmin temperature and AMO+, indicating that this index was the most influencing teleconnections (with 3 seasons lag). In comparison with the normal phase, the occurrence of El Niño causes earlier autumn and spring frost events. In contrast, La Niña event will postpone the dates of autumn and spring frosts. This means that if La Niña occurs in winter, the strongest effect will be appeared in the autumn of the following year. The correlation between the El Niño, La ‌Niña and Normal phases with minimum temperature showed that the La ‌Niña phase has the highest effect on shifting the dates of the minimum temperature event.
The strongest correlation between the minimum temperature of autumn and teleconnection patterns (correlation coefficient of 0.382) was observed for AO- , highlighting the fact that the occurrence of the Negative phase of this phenomenon leads to the cause a delay in occurrence of first autumn frost (FAF). For the last spring frost (LSF), the strongest correlation was found for SOI- index (correlation coefficient of 0.665) for Hamedan station, leading to early spring cold in the region. The correlation between the phases of the El Niño, La Niña and Normal with minimum temperatures showed that the La Niña phase has the most effective phase affecting the minimum temperature. The results of this research can be used for wise managing of risk factors and arranging appropriate time of planting agricultural products, as well as insurance for agricultural products.

Conclusions
This study highlighted the impact of teleconnection phenomena on shifting the dates of autumn and spring frost. It was shown, that the occurrence of teleconnection can significantly shift the date of first and last frost in the study region. For some teleconnections cause the advance, but for others may postpone (up to 50 days) the frost event. We found different results for lag-free correlations compared to lag-correlations. For instance, for monthly analysis of lag-free correlations, the strongest correlation between teleconnection indices and minimum temperature was found for NAO- (-0.76), but for lag correlations, the strongest correlation was found for AMO+. In comparison with the normal phase, the occurrence of El Niño causes earlier autumn and spring frost events. The results showed that Shifting the Date of First )Autumn( and Last )Spring( Frost Events at the stations were related to a number of teleconnection patterns such as AMO, SOI, NAO, AO and MEI. In contrast, La Niña event will postpone the dates of autumn and spring frosts. Further works are required to better understanding of the impacts of teleconnection events on other meteorological parameters such as humidity which was not investigated in this research.

Introduction
Frost and freezing are important and risk generating factor in the agricultural sector of the country. Frost is a phenomenon that at low temperatures which could damage or destruct the plant organs. Various studies by researchers show that last spring frost (LSF) and first autumn frost (FAF) along with gradual global warming have significant impacts on agriculture and natural resources. Teleconnection patterns represent large changes which can periodically alter other atmospheric patterns such as temperature, wind, humidity and precipitation in regional and global scales. The purpose of this study was to investigate the effect of different teleconnection indices on variability of FAF and LSF events during the last 31 years at 12 Synoptic stations of Iran.

Materials and Methods
To detect the relationships between frost events and teleconnection patterns we used two different data sources. As the first source, the screen daily minimum air temperature (Tmin) were used as the frost indicator. We also applied 10 different teleconnection indices in daily and monthly scales. Daily minimum air temperature were obtained from the Iran Meteorological Organization (IRIMO) for the historical period of 1985-2015. The teleconnection indices were also utilized for the same period (http://www.cdo.noaa.gov). After the data quality control, the outlier data were removed from the analysis. Normality of data was evaluated by Kolmogorov-Smirnov test. For time series with normal distribution (P <0.05), the Pearson’s significance test was performed. For other time series, when the normal distribution was not the case, Spearman's non-parametric test was applied.

کلیدواژه‌ها [English]

  • Minimum temperature
  • Frost
  • Teleconnection indices
  • Correlation coefficient
امیدوار، ک. و جعفری‏ ندوشن، م. (1393). اثر نوسان قطبی بر نوسان‏های دما و بارش فصل زمستان در ایران مرکزی، جغرافیایی سرزمین، 11(۴۱): ۶۵-76.
زارع ابیانه، ح. و بیات ورکشی، م. (1391). تأثیر پدیدة انسو بر تغییرات دمای ماهانه و فصلی نیمة جنوبی کشور، پژوهش‏های جغرافیای طبیعی، 44(۲): ۶۷-84.
خسروی، م. (1383). بررسی روابط بین الگوهای چرخش جوی کلان‏مقیاس نیم‌کرة شمالی با خشک‏سالی‏های سالانة سیستان و بلوچستان، مجلة جغرافیا و توسعه، 2(۳۳): ۱۶۷-188.
خسروی، م. و مسگری، ا. (1395). تحلیل فضایی روابط الگوهای پیوند از دور با دمای ماهانة شمال غرب ایران، مجلة جغرافیا و آمایش شهری- منطقه‏ای، 6(۲۱): ۲۰۳-214.
خورشیددوست، ع.م. و قویدل رحیمی، ی. (1385). ارزیابی اثر پدیدة انسو بر تغییرپذیری بارش‏های فصلی استان آذربایجان شرقی با استفاده از شاخص چندمتغیرة انسو، مجلة پژوهش‏های جغرافیایی، 57: 15- 26.
سبحانی، ب.؛ صلاحی، ب. و گل‌دوست، ا. (1393). ارتباط شاخص اقلیمی  NAO با مقادیر میانگین، حداکثر، و حداقل دمای ماهانة شمال غرب ایران،  نشریة تحقیقات کاربردی علوم جغرافیایی، 4(۳۳): ۷۵-90.
عزیزی، ق؛ چهره‏آرا، ت. و صفر راد، ط. (1393) اثر هم‏زمان فازهای  NAO و SOI بر آب‏وهوای ایران، فصل‌نامة جغرافیا و پایداری محیط، 12: ۴۳-56.
غفاری، ع.؛ قاسمی، و.ر. و دپائو، ا. (1394). پهنه‏بندی اقلیم کشاورزی ایران با استفاده از روش یونسکو، نشریة زراعت دیم ایران، 4(۱): ۶۳-74.
قربانی، خ. و ولی‌زاده، ا. (1393). بررسی تاریخ یخبندان‏ها و سرماهای مؤثر در کشاورزی تحت‌تأثیر تغییر اقلیم (مطالعة موردی: مشهد، تبریز و قزوین)، نشریة پژوهش‏های حفاظت آب‏وخاک، 21(4).
قویدل رحیمی، ی. و خوشحال دستجردی، ج. (1389). جستاری پیرامون سختی اقلیم زمستانی تبریز و ارتباط آن با نوسانات شمالگان، برنامه‏ریزی و آمایش فضا، 1(۱۴): ۱۷۹-196.
قویدل رحیمی، ی.؛ فرج‌زاده اصل، م. و حاتمی زرنه، د. (1394). تحلیل رابطة پیوند از دور بین الگوی دریای شمال- خزر و دماهای حداقل ایران، فصل‌نامة علمی- پژوهشی فضای جغرافیایی، 16(۵۲): ۱۳۷-159.
قویدل رحیمی، ی.؛ فرج‌زاده‏ اصل، م. و حاتمی‌کیا، م. (1395). نوسان شمالگان و نقش آن در تغییرپذیری دماهای کمینة منطقة شمال شرق ایران، نشریة تحقیقات کاربردی علوم جغرافیایی، 16(۴۲): ۴۱-58.
کارآموز، م.؛ رمضانی، ف. و رضوی، س. (۱۳۸۵). پیش‏بینی بلندمدت بارش با استفاده از سیگنال‏های هواشناسی: کاربرد شبکه‏های عصبی مصنوعی، هفتمین کنگره بین‏المللی مهندسی عمران، تهران: دانشگاه تربیت مدرس، دانشکدة عمران.
کوچکی، ع. و نصیری محلاتی، م. (1370). اکولوژیگیاهانزراعی: روابطگیاهان ومحیط، مشهد: انتشارات جهاد دانشگاهی مشهد.
مرادی، م. ر. (1383). شاخص نوسانات اطلس شمالی و تأثیر آن بر اقلیم ایران، مجلة پژوهش‌های جغرافیایی، دورة 36، (48): 17–30.
مهرآور، ص.؛ قائد امینی، ح. و ناظم السادات، م. (1397). بررسی پیوند نوسان‏های مادن‏- جولیان با النینو- نوسان‏های جنوبی و بازخورد آن بر بارش‏های پاییزة استان فارس، مجلة ژئوفیزیک ایران، 12(۲): 109–126.
میرمسعودی، ش.؛ معروفی، ص.؛ سبزی‌پرور، ع.‌ا. و تنیان، س. (1387). تأثیر پدیدة انسو (النینو/ نوسان جنوبی) بر دمای هوای ایران (مطالعة موردی شهرهای تبریز، سقز، و قزوین)، دومین همایش ملی مدیریت شبکه‏های آبیاری و زهکشی، 8 الی 10 بهمن، دانشکدة مهندسی علوم آب دانشگاه شهید چمران اهواز.
ناظم‌السادات، م.‌ج.؛ ارمغان انصاری، ب، و پیشوایی، م.‏ر. (1386). ارزیابی سطح معنی‏داری برای پیش‏بینی دوران خشک‏سالی و ترسالی فصل پاییز و شش‏ماهة سرد ایران براساس وضعیت فازهای تابستانة ENSO، مجلة تحقیقات منابع آب ایران، 3(۱): ۱۲-۲۴.
یاراحمدی، د. و عزیزی، ق. (1386). تحلیل چندمتغیرة ارتباط میزان بارش فصلی ایران و شاخص‏های اقلیمی، پژوهش‏های جغرافیایی، 62: ۱۶۱-174.
Azizi, G.; Chehreh Ara, T. and Safar Rad, T. (2014). The simultaneous effect of NAO and SOI phases on Iran's climate, Quarterly Journal of Geography and Environmental Sustainability, 12: 43-56.                                                                                                                                                            
Chowdary, J.S.; Shang-Ping, Xie; Hiroki, Tokinaga; Yuko M, Okumura; Hisayuki, Kubota; Nat, Johnson and Xiao- Tong, Heng (2012). Interdecadal Variations in ENSO Teleconnection to the Indo–Western Pacific for 1870-2007, Journal of climate, 25(5): 1722-1744.
Cohen, J.; Foster, J.; Barlow, M.; Saito, K. and Jonce, J. (2010). Winter 2009-2010: A Case study of an extream Arctic Oscillation event, Geophysical Research Letters, 37: L17707.
Gavidel Rahimi, Y.; Farajzadeh Asl, M. and Hatami Kia, M. (2016). Fluctuation in the North and its Role in Changing the Ambient Temperatures of the Northeast Region of Iran, 16(42): 41-58.
Ghafari, A.; Ghasemi, V.R. and Depao, E. (2015). The zoning of Iranian agricultural climate using the UNESCO method, Iranian Dryland Agriculture Journal, 4(1): 63-74.    
Ghanghermeh, A.; Roshan, G. and Al-Yahyai, S. )2015(. The influence of Atlantic-Eurasian teleconnection patterns on temperature regimes in South Caspian Sea coastal areas: a study of Golestan Province, North Iran, Pollution, 1(1): 67-83.
Ghasemi, A.R. and Khalili, D. )2006(. The influence of the Arctic Oscillation on winter temperatures in Iran, Theoretical and Applied Climatology, 85(3): 149-164.
Ghorbani, KH. and Valizadeh, E. (2014). Investigation of the Effects of Ice Frost and Sectors Effective in Climate Change Agriculture (Case Study: Mashhad, Tabriz and Qazvin), Journal of Water and Soil Conservation Research, 21(4).    
Ghvidel Rahimi, Y. and Khoshhal Dastjerdi, J. (2010). An inquiry into the harshness of the winter climate in Tabriz and its relationship to the fluctuations of the north, Programming and Spatial Planning, 14(1): 179-196.
Ghvidel Rahimi, Y.; Farajzadeh, M. and Hatami, D. (2015). Analysis of the relationship between the North Sea - Caspian pattern and minimum temperatures in Iran, Journal of geographical space, 5: 137-159.
Karamoz, M.; Ramezani, F. and Razavi, S. (2006). Long-term forecasting of precipitation using meteorological signals: Application of artificial neural networks, 7th International Congress of Civil Engineering, Tehran, Tarbiat Modares University, Faculty of Civil Engineering.
Khorshid Doost, A.M. And Qavidel Rahimi, Y. (2006). Evaluation of the effect of Enso phenomenon on the variability of seasonal precipitation in East Azarbaijan province using Enso multivariate index, Journal of Geographical Research, 57: 15-26.
Khosravi, M. (2004). A Study of the Relationships between Macro Rotation Patterns of Northern Hemisphere Scale with Annual Droughts of Sistan and Baluchestan Annual Journal, Journal of Geography and Development, 2(3): 167-188.
Khosravi, M. and Mesghari, E. (2016). Spatial Analysis of Relationships of Remote Link Patterns with the Monthly Temperature of Northwest of Iran, Journal of Geography and Urban-Regional Planning, 6(21): 203-214.
Kochaky, A. and Nasiri Mahallati, M. (1991). Crop Ecology: Plant and Environment Relations, Mashhad University Jihad Publications.
Maryanaji, Z.; Tapak, L. and Hamidi, O. (2019). Climatic and atmospheric indices teleconnection impact to the characteristics of frost season in wstern Iran, Journal of Water and Climate Change, 10.2, IWA Publishing.
Mathieu, P.; Sutton, R. and Dong, B. (2004). Predictability of winter climate over the North Atlantic European region during Enso events, J.Clim., 17(10): 1953-1974.
Mehravar, P.; Qaed Amini, H. and Nazem Sadat, M. (2018). Investigating the link between Madan fluctuations - Julian and El Nino - Southern fluctuations and its feedback on autumn rains in Fars province, Iranian Journal of Geophysics, 12(2): 109-126.
Mirmasoudi, Sh.; Maroufi, S.; Sabziparvar, A.A. and Tanian, S. (2008). Effect of Enso Phenomenon (Elnino / Southern Fluctuation) on Iranian Air Temperature (Case Study of Tabriz, Saqez and Qazvin), Second National Conference on Irrigation and Drainage Networks Management, 8 to 10 Bahman, Faculty of Water Engineering, Shahid Chamran University of Ahvaz.                                                                     
Nazim Sadat, M.J.; Armaghan Ansari, B. and Pishvaie, M.R. (2007). Assessing the level of significance for predicting the dry and aging period of the cold autumn and six months of Iran based on the situation of summer phases of ENSO, Iranian Journal of Water Resources Research, 3(1): 12-24.
Omidvar, K. and Jafari Nadoushan, M. (2014). The Effect of Polar Oscillation on Temperature and Cold Changes in Central Iran, Journal of Geosciences, 11 (41), pp. 65-76.
Rajeevan, M. and Pai, D.S. (2007). On the El Niño‐Indian monsoon predictive relationships, Geophysical Research Letters, 34(4).
Rigby, J.R. and Porporato, A. (2008). Spring frost risk in a changing climate, Geophysical Res. Lett., 35(12).
Rodriguez-Puebla, C.; Encinas, A.H.; Nieto, S. and Garmendia, J. (1998). Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula, International Journal of Climatology, 18(3): 299-316.
Sobhani, B.;  Salahi, B. and Goldoost, A. (2014). Relationship between NAO climate index with average, maximum and minimum monthly temperatures in northwestern Iran, Journal of Applied Research in Geographical Sciences, 4(33): 75-90.
Strong, C. and McCabe, G.J. (2017). Observed variations in U.S. frost timing linked to atmospheric circulation patterns, Nature Communications, Doi: 10.1038/ncomms15307.
Thakur, B.; Kalra, A.; Lakshmi, V.; Lamb, K.; Miller, W. and Tootle, G. (2020). Linkage between ENSO phases and western US snow water equivalent, Atmospheric Research, ISSN: 0169-8095, 236: 104827.
Trenberth, K.E. and Stepaniak, D.P. (2001). Indices of El Niño evolution, Journal of Climate, 14(8): 1697-1701.
Turkes, M. and Erlat, E. (2005). Climatological responses of winter Precipitation in Turkey to variability of the North Atlantic Oscillation during the period 1030-2001, Theoretical and Applied Climatology, 78: 33-46.
Yarahmadi, D. and Azizi, Q. (2007). Multivariate Analysis of the Relationship between Iranian Seasonal Rainfall and Climatic Indicators, Geographical Research, 62: 161-174.
Zare Abyaneh, H. and  Bayat Varkshi, M. (2012). Effect of Enso Phenomenon on Monthly and Seasonal Temperature Changes in the Southern Hemisphere, Natural, Geographical Research, 44(2): 67-84.