ارزیابی پایگاه داده بازکاوی ERA- Interim در ارزیابی توزیع زمانی-مکانی و روند تندی باد در شرق ایران

نوع مقاله : مقاله کامل

نویسندگان

1 دانشجوی دکتری، گروه جغرافیای طبیعی، دانشکدة جغرافیا، دانشگاه تهران، تهران، ایران

2 استاد اقلیم‏ شناسی، گروه جغرافیای طبیعی، دانشکدة جغرافیا، دانشگاه تهران، تهران، ایران

3 استادیار گروه جغرافیای طبیعی، دانشکدة جغرافیا، دانشگاه تهران، تهران، ایران

4 دانشیار گروه جغرافیای طبیعی، دانشکدة جغرافیا، دانشگاه تهران، تهران، ایران

چکیده

هدف از انجام‏دادن ‏این پژوهش بررسی عملکرد پایگاه داده بازکاوی ECMWF برای توزیع زمانی-مکانی تندی باد در شرق ایران و روند آن است. به این منظور، از داده‏های بازکاوی ECMWF با تفکیک افقی 125/0×125/0 درجة قوسی استفاده شد؛ عملکرد داده‏ها با استفاده از 11 ایستگاه سینوپتیک با دورة آماری ۱۹۸۵-2015 و به‏کارگیری نمایة آماری RMSE، MBE، MAE، و R2 بررسی شد. نتایج نشان داد Interim برای بررسی تندی باد از عملکرد بالا و مناسبی برخوردار است. متوسط بلندمدت تندی باد در منطقة مورد مطالعه 56/3 m/s است؛ بیشینه و کمینة تندی باد بهترتیب در جولای و دسامبر اتفاق افتاده است. آرایش اصلی باد در شرق ایران شرقی و شمالی است؛ ارتباط بین تندی باد با ارتفاع معکوس و با طول جغرافیایی مستقیم و در سطح 05/0 معنیدار است. همچنین، ارتباط بین عرض جغرافیایی و تندی باد نشان داد که این ارتباط در ماههای سرد سال معکوس و در ماههای گرم سال مستقیم است. بررسی روند تندی باد با استفاده از آزمون من- کندال (M-K) نشان داد متوسط روند تندی باد در  هفت ماه سال مثبت و در پنج ماه منفی است. همچنین، روند تندی باد در زمان آغاز (جون) باد 120روزه مثبت (۱۹۵/۰)و در زمان خاتمه (اکتبر) آن منفی (-۱۵۲/۰) است.

کلیدواژه‌ها


عنوان مقاله [English]

performance Evaluation of ERA-ENTRIM in spatio-temporal distribution and wind speed trend in eastern Iran

نویسندگان [English]

  • mohammad hashemzadegazar 1
  • Ghasem Azizi 2
  • Mostafa Karimi 3
  • F Khoshakhlagh 4
  • Aliakbar Shamsipour 4
1 Department of Physical Geography, University of Tehran
2 Professor of climatology, Faculty of Geography, University of Tehran
3 Assistant Professor, Faculty of Geography, University of Tehran
4 Associate Professor, Faculty of Geography, University of Tehran
چکیده [English]

Extended abstract
Introduction
The wind is the horizontal displacement of air that is less than one meter per second. The wind is a dynamic phenomenon and has three main characteristics: intensity, direction, and frequency. Therefore, knowledge of wind characteristics in every area of importance is remarkable. The effects of global warming on temperature and precipitation at the global level over the past decades, many studies were considered; However, relatively little attention to climate change is wind speed. Wind speed changes can affect the energy of storms, shipping industries, as well as soil moisture, evaporation, and water resources; and it may even affect the evolution of dry and semi-arid environments. Also, a lot of research on wind and meteorology has shown that the performance of wind turbines is sensitive to climate change. Possible changes to the future wind regime have been widely considered under changing weather conditions; under global warming, the intensity and frequency of wind events are expected to change at the end of this century.
Materials and methods
The study area in this study of the eastern strip of Iran includes four provinces of Khorasan Razavi, South Khorasan, Kerman, and Sistan and Baluchestan. The study used wind speed data at a height of 10 meters, 10 synoptic stations with a daily statistical period of 2015-1985, which has 30 years of data; In choosing this station, in addition to proper distribution in the region, an attempt was made to select more stations in the station to be affected by the 120-day winds of Sistan. In this study, 10-meter daily wind speed data of the ERA-Interim version with a resolution of 0.125 × 0.125 degrees period of 1980-2015 were used; for the study area, 3772 pixels with an inter-pixel distance of about 12.5 km have been obtained. To evaluate the performance of simulated data against observational data; There are several indicators used in this study from the Root mean squared error (RMSE), Mean bias error (MBE), mean absolute error (MAE), and the coefficient of determination (R2). The non-parametric Man-Kendall method was used to investigate the trend of wind speed changes in research.
Results and discussion
The ECMWF ERA-Interim version has a high and good performance for wind speed. The results showed that the output of the mentioned base in all the studied stations is on average between 0.722 and 0.984. RMSE, MBE and MAE characteristics in Zahedan, Khash and Saravan stations are less than m / s1; In other words, the wind speed of ECMWF base in these three stations has the highest performance of the 11 stations studied. The monthly statistical assessment of wind speed in selected stations in eastern Iran during the statistical period studied (1985-1985) showed that the average wind speed is 3.56 m / s. The relationship between wind speed with negative altitude and positive longitude is significant at the level of 0.05. Also, the relationship between latitude and wind speed showed that this relationship is negative in the cold months of the year and positive in the warm months of the year. The average wind speed fluctuates greatly during the 30-year statistical period. The average wind speed varies between 2.82 and 4.57 m / s. The minimum and maximum wind speeds were calculated in December and July, respectively. The average 30-year wind speed at selected stations in eastern Iran was calculated to be 2 m / s. The maximum wind speed in eastern Iran has many fluctuations; autumn showed the lowest statistical value in terms of maximum wind speed; In December, the maximum wind speed was calculated to be 3.98 m / s. The maximum wind speed is increasing in all the studied months; From a statistical significance level, all the studied months except January, which, despite being increasing, are; But statistically, it is not significant at the level of 0.05 and 0.01; Other studied wind speed studies have a significant incremental trend at α = 0.01. The average wind speed in the study area is negative in 7 months (January, April, May, July, August, October and December) from the negative years and in 5 months (February, March, June, September and November). The maximum wind speed is January 4.42, February 4.86 and March 5.02 m / s. The next area to be obtained in the form of a fertile area in winter; Zabol is also the center of Iran's border with Afghanistan in the border areas of South Khorasan Province. The wind speed trend is positive at the time of onset (June, 0.79), the 120-day wind is positive and negative at the time of termination (October, -0.15).
Conclusion
The average wind speed in the study area (Khorasan Razavi and South Khorasan, Kerman and Sistan and Baluchestan provinces) during the long-term statistical period of 30 years (2015-1985) is 3.56 m / s; The minimum and maximum wind speeds are obtained in July and December, respectively; The reason for the increase in wind speed in July is due to the 120-day wind activity in Sistan, which started in June. The average wind speed in the study area is negative in 7 months (January, April, May, July, August, October, and December) from the negative year and in 5 months (February, March, June, September, and November). Investigation of wind speed process using non-parametric Man-Kendall (M-K) test; It showed that the wind speed trend in eastern Iran in the first month of June (June) 120-day winds showed an increasing trend (Z score of the Man-Kendall test 0.795) and in the last month (October) it decreased (-0.1152). ). Also, in July, when the wind speed is maximum, the average trend in the study area with a score of Z, 0.242 - is decreasing. Pearson correlation test showed that the relationship between wind speed and topography in the study area was statistically significant at 0.05; In contrast, the relationship between longitude and wind speed is significant in all studied moles at the alpha level of 0.05. In contrast, longitude and altitude in the study area did not show a uniform relationship between latitude and wind speed; this relationship is reversed for the cold months of the year and directly for the warm months. In October alone, the relationship between wind speed and latitude is not significant.

کلیدواژه‌ها [English]

  • Climatic Database
  • Mann-Kendall Test
  • the 120-Day Wind
  • Southeastern Iran
آبخرابات، ش.؛ کریمی، م.؛ فتحنیا، ا. و شام بیاتی، م.ح. (1396). بررسی نقش باد 120روزۀ سیستان در وزش دمایی شرق و جنوب ‏شرق ایران، پژوهش‏های جغرافیای طبیعی، 49 (3): 477-489.
بابائیان، ا.؛ بداق جمالی، ج.؛ جوانمرد، س. و خزانهداری، ل. (1381). بررسی خطای دادههای پیشیابی مرکز اروپایی پیشبینیهای میانمدت جوی (ECMWF) بر روی خاورمیانه، دومین همایش پیشبینی عددی وضع هوا، تهران.
حمیدیان‏پور، م. (1392). بررسی نحوة شکل‏گیری باد سیستان با ریزگردانی دینامیکی جریان‏های تراز زیرین در شرق فلات ایران، رسالة دکتری اقلیم‏شناسی دانشگاه خوارزمی، تهران.
حیدری علمدارلو، ا.؛ زهتابیان، غ.؛ خسروی، ح.؛ رایگانی، ب.؛ خلیقی، ش. و تقیزاده، ر. (1398). بررسی نوسان پارامتر‏های اقلیمی با استفاده از داده‍‏های مرکز پیش‏بینی میانمدت جوی اروپایی (مطالعة موردی: منطقة شیرکوه- استان یزد)، مجلة علوم ومهندسی آبخیزداری ایران، ۱۳(۴۶): ۲۲-۳۱.
دارند، م. و زند کریمی، س. (1394). واکاوی سنجش دقت زمانی- مکانی بارش پایگاه دادۀ مرکز پیش‏بینی میان‏مدت جوی اروپایی (ECMWF) بر روی ایران‏زمین، پژوهشهای جغرافیای طبیعی، 47(4): 651-675.
دارند، م. و زند کریمی، س. (1395). ارزیابی دقت داده‏های بارش مرکز اقلیم‏شناسی بارش جهانی بر روی ایران، مجلة ژئوفیزیک ایران، 10(3): 95-113.
دلبری، م.؛ که‏خامقدم، پ.؛ محمدی، ا. و احمدی، ت. (1395)، برآورد الگوی پراکنش مکانی تندی باد برای پتانسیل‏یابی تولید انرژی بادی در ایران، پژوهش‏های جغرافیای طبیعی، 48(۲): 265-285.
ذوالفقاری، ح.؛ صحرایی، ج.؛ معصومپور سماکوش، ج. و برزو، ف. (1395). بررسی شار گرمای محسوس و ارتباط آن با تغییرات دما و باد طی دورۀ گرم سال در ایران، پژوهش‏های جغرافیای طبیعی، 48(۳): 431-450.
رضیئی، ط. و ستوده، ف. (1396). بررسی دقت مرکز اروپایی پیش‏بینی‏های میان‏مدت جوی (ECMWF) در پیش‏بینی بارش مناطق گوناگون اقلیمی ایران، فیزیک زمین و فضا، 43(۱): 133-147.
سبزیپرور، ع. ا. و شادمانی، م. (1390). تحلیل روند تبخیر و تعرق مرجع با استفاده از آزمون من-کندال و اسپیرمن در مناطق خشک ایران، آب و خاک (علوم و صنایع کشاورزی)، 25(4): 823-834.
سلیقه، م. (1396). آب و هواشناسی سینوپتیک ایران، تهران: سمت.
عزیزی، ق.؛ فرید مجتهدی، ن.؛ شعبانزاده، ف.؛ نگاه، س. و عابد، ح. (1396). رفتارشناسی باد در ایستگاه‏های کوهستانی البرز غربی تحت تأثیر واداشت‏های محیطی، نشریة جغرافیا و برنامه‏ریزی، 21(۶۲): 203-222.
علیجانی، ب. (1389)، آب‏وهوای ایران، چ ۱۰، تهران: انتشارات دانشگاه پیام نور.
قهرمان، ن. و قرهخانی، ا. (1389). بررسی روند تغییرات زمانی سرعت باد در گسترة اقلیمی ایران، مجلة آبیاری و زهکشی ایران، 4(۱): 31-43.
مسعودیان، س.ا. (1390). آب‏وهوای ایران، مشهد: شریعة توس.
میراکبری، م.؛ مصباحزاده، ط.؛ محسنی ساروی، م.؛ خسروی، ح. و مرتضایی فریزهندی، ق. (1397). ارزیابی کارایی مدل سری CMIP5 در شبیه‏سازی و پیش‏بینی پارامترهای اقلیمی بارندگی، دما، و تندی باد (مطالعۀ موردی: استان یزد)، پژوهش‏های جغرافیای طبیعی، 50(۳): 593-609.
میرعباسی، ر. و دینپژوه، ی. (1394). بررسی روند تغییرات سرعت باد در ایستگاههای منتخب ایران، جغرافیا و برنامهریزی،52: 277-301.
Abkharabat; sh., Karimi, M., Fathnia, A., Shambaiati, M.(2017), The Role of Sistan 120 Days Wind in Thermal Advection of East and Southeast Iran, Physical geography research quarterly: 49 (3), 477-489.
Alijani, b. (2010), Iran Climate, 10th Edition, Tehran: Payame Noor University Press.
Azizi, G., Farid Mojtahedi, N., shabanzadeh, F., Negah, S., Abed, H. (2018). 'Analysis of wind behavior by environmental forcing in the western Alborz mountainous stations', Geography and Planning, 21(62), pp. 203-222. doi: 3-6.
Carvalho, D.; Rocha, A.; Gómez-Gesteira, M. and Santos, C. S. (2017). Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renewable Energy, 101: 29-40.
Cheng, C. S.; Lopes, E.; Fu, C. and  Huang, Z. (2014). Possible impacts of climate change on wind gusts under downscaled future climate conditions: Updated for Canada. Journal of climate, 27(3): 1255-1270.
Darand, M., Zand Karimi2, S. (2016). 'Evaluation of the accuracy of the Global Precipitation Climatology Center (GPCC) data over Iran', Iranian Journal of Geophysics, 10(3), pp. 95-113.
Darand, M., Zande Karimi, S. (2015). 'Evaluation of Spatio-Temporal Accuracy of Precipitation of European Center for Medium-Range Weather Forecasts (ECMWF) over Iran', Physical Geography Research Quarterly, 47(4), pp. 651-675. doi: 10.22059/jphgr.2015.56054.
Debernard, J. B. and Røed, L. P. (2008). Future wind, wave and storm surge climate in the Northern Seas: a revisit. Tellus A: Dynamic Meteorology and Oceanography, 60(3): 427-438.
Delbari, M., Kahkha Moghaddam, P., Mohammadi, E., Ahmadi, T. (2016). 'Estimation of the spatial distribution pattern of wind speed for assessment of wind energy potential in Iran', Physical Geography Research Quarterly, 48(2), pp. 265-285. doi: 10.22059/jphgr.2016.59368.
Hamidianpour, M. (2014). Investigating the formation of Sistan wind with dynamic downscaling of low-level currents in the east of the Iranian plateau, Ph.D. thesis in Kharazmi University, Tehran.
Heydari Alamdarloo, H., Zehtabian, G., Khosravi, H., Raygani, B., Khalighi, S., Taghizadeh, S. (2019) Investigation on the Climatic Parameters Fluctuation Using Data from the European Centre for Medium-Range Weather Forecasts, Iran-Watershed Management Science & Engineering, Vol. 13, No. 46, Fall 2019.
Hobbins, M. (2004). Regional evapotranspiration and pan evaporation: complementary interactions and long-term trends across the conterminous United States. Colorado State University.
Iman Babaian, I., Bodagh Jamali, J., Javanmard, S.,Khazanedari, L. (2002), Investigation of Error in Prediction Data of the European Center for Medium-Term Weather Forecasting (ECMWF) on the Middle East, 2nd Conference on Numerical Weather Forecasting, Tehran.
Kendall, M. G. (1955). Rank correlation methods (2nd ed.). Charles Griffin & Co. Ltd., London, 1955.
Klink, K. (2002). Trends and interannual variability of wind speed distributions in Minnesota. Journal of Climate, 15(22): 3311-3317.
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259.
McVicar, T. R.; Van Niel, T. G.; Li, L. T.; Roderick, M. L.; Rayner, D. P.; Ricciardulli, L. and Donohue, R. J. (2008). Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near‐surface reanalysis output. Geophysical Research Letters, 35(20).
Mirabbasi Najafabadi, R., Dinpashoh, Y. (2015). 'Analysis of the Wind Speed Trend over Iran', Geography and Planning, 19(52), pp. 277-301.
Mirakbari, M., Mesbahzadeh, T., Mohseni Saravi, M., Khosravi, H., Mortezaie Farizhendi, G. (2018). 'Performance of Series Model CMIP5 in Simulation and Projection of Climatic Variables of Rainfall, Temperature and Wind Speed (Case Study: Yazd)', Physical Geography Research Quarterly, 50(3), pp. 593-609. doi: 10.22059/jphgr.2018.248177.1007156.
Ghahreman, N. and Gharekhani, A. (2010), Trend analysis of mean wind speed in different climatic regions of Iran, Iranian Journal of lrrigation and drainage: 4(1), 31-43.
Masoudian, S.A. (2012). Iran Climate, Mashhad: sharieye tus, Mashhad.
Naizghi, M. S. and Ouarda, T. B. (2017). Teleconnections and analysis of long‐term wind speed variability in the UAE. International Journal of Climatology, 37(1): 230-248.
Okin, G. S.; Gillette, D. A. and Herrick, J. E. (2006). Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. Journal of arid environments, 65(2): 253-275.
Pirazzoli, P. A. and Tomasin, A. (2003). Recent near‐surface wind changes in the central Mediterranean and Adriatic areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(8): 963-973.
Pryor, S. C.; Barthelmie, R. J. and Riley, E. S. (2007). Historical evolution of wind climates in the USA. In Journal of Physics: Conference Series, 75(1): 012065. IOP Publishing.
Pryor, S. C.; Schoof, J. T. and Barthelmie, R. J. (2006). Winds of change?: Projections of near‐surface winds under climate change scenarios. Geophysical research letters, 33(11).
Rayner, D. P. (2007). Wind run changes: the dominant factor affecting pan evaporation trends in Australia. Journal of Climate, 20(14): 3379-3394.
Raziei, T., Sotoudeh, F. (2017). 'Investigation of the accuracy of the European Center for Medium Range Weather Forecast (ECMWF) in forecasting observed precipitation in different climates of Iran', Journal of the Earth and Space Physics, 43(1), pp. 133-147. doi: 10.22059/jesphys.2017.57958.
Roderick, M. L.; Rotstayn, L. D.; Farquhar, G. D. and Hobbins, M. T. (2007). On the attribution of changing pan evaporation. Geophysical research letters, 34(17).
Sabziparvar, A., Shadmani, M. (2011). Trends Analysis of Reference Evapotranspiration Rates by Using the Mann-Kendall and Spearman Tests in Arid Regions of Iran, Journal of Water and Soil: 25 (4), p. 823-834.
Smits, A. A. K. T.; Klein Tank, A. M. G. and Können, G. P. (2005). Trends in storminess over the Netherlands, 1962-2002. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(10): 1331-1344.
Tobin, I.; Jerez, S.; Vautard, R.; Thais, F.; Van Meijgaard, E.; Prein, A.; ... and Noël, T. (2016). Climate change impacts on the power generation potential of a European mid-century wind farms scenario. Environmental Research Letters, 11(3): 034013.
Watson, S. J.; Kritharas, P. and Hodgson, G. J. (2015). Wind speed variability across the UK between 1957 and 2011. Wind Energy, 18(1): 21-42.
Xu, C. Y.; Gong, L.; Jiang, T.; Chen, D. and Singh, V. P. (2006). Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of hydrology, 327(1-2): 81-93.
Zhang, Y.; Liu, C.; Tang, Y. and Yang, Y. (2007). Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 112(D12).
Zolfaghari, H., Sahraei, J., Masoompoor Samakoosh, J., Borzoi, F. (2016). 'Study of Sensible Heat Flux and its Relationship with Temperature Changes and Wind during Warm Periods of Year in Iran', Physical Geography Research Quarterly, 48(3), pp. 431-450. doi: 10.22059/jphgr.2016.60100.