الگوهای توزیع فراوانی آب بارش‌پذیرِ ایران‌زمین در دورة مطالعاتی 1381-1396

نوع مقاله : مقاله کامل

نویسندگان

1 دانشجوی دکتری آب و هواشناسی،‌ گروه جغرافیای طبیعی دانشگاه اصفهان

2 استاد آب و هواشناسی،‌ گروه جغرافیای طبیعی دانشگاه اصفهان

3 استاد آب و هواشناسی، گروه جغرافیای دانشگاه زنجان

10.22059/jphgr.2021.289267.1007438

چکیده

رطوبت جو نه‌تنها یک گاز گلخانه‌ای مهم به‌شمار می‌رود، بلکه وردش‌های جهانی اقلیم و چرخة آب نیز به شکل قابل توجهی تحت تأثیر این عامل قرار دارد. در این مطالعه برای بررسی الگوهای توزیع فراوانی آبِ بارش‌پذیر در ایران از فرآوردة آب بارش‌پذیر سنجندة مودیس آکوا برای بازة زمانی 1381-1396 استفاده شد. نتایج حاصل از اجرای روش تحلیل مؤلفة اصلی‌ بر روی آرایة فراوانی آبِ بارش‌پذیر در گسترة ایران نشان داد چهار مؤلفة اول 5/95 درصد پراش کل را تبیین می‌کند. ارتباط هر یک از این مؤلفه‌ها با عامل ارتفاع و فاصله از دریا نیز بررسی شد.‌ نتایج تحلیل مؤلفه نشان داد در بخش‌های داخلی، ارتفاع و در کرانه‌ها شرایط دمایی و فرارفت رطوبت بیشترین نقش را در توزیع فراوانی رطوبت جو ایران بازی می‌کنند؛ به‌طوری‌که آبِ بارش‌پذیر مناطق با ارتفاع بالاتر از 3000 متر‌ کمتر از 6 میلی‌متر و سواحل دریای عمان در 60 درصد اوقات بالای 26 میلی‌متر است. واکاوی پیوند میان ارتفاع و فاصله از دریا با مؤلفه‌های اصلی نیز تأییدی بر یافته‌های فوق بود.‌

کلیدواژه‌ها


عنوان مقاله [English]

Frequency Distribution Patterns of Precipitable Water in Iran

نویسندگان [English]

  • Manizhe Kiyanipour 1
  • Seyed Abolfazl Masoodian 2
  • hossein asakereh 3
1 Ph.D. Student, Department of Physical geography, University of Isfahan, Isfahan, Iran
3 دانشگاه زنجان
چکیده [English]

Frequency Distribution Patterns of Precipitable Water in Iran

Introduction
Precipitable water (PW) is highly variable in space and time and is one of the most important abundant greenhouse gases that play crucial role in the study of climate change, hydrological cycle, energy budget and numerical weather prediction. The knowledge about the spatial and temporal variability of PW is important in understanding climatic processes and in order to monitor drought conditions and desertification processes (Kaufman & Gao,1992). It is therefore necessary to obtain the distribution condition of water vapor in the atmosphere and to understand the effects of spatial–temporal variation of PW on regional, meso-micro scales and on global climate change (Wang, 2013). PW has a very short life cycle in atmosphere and this rapid turnover, joined to temperature variations with altitude and geography, distance to sea, evapotranspiration and moisture advection causes an irregular PW distribution in atmosphere, both horizontally and vertically. The purpose of this study was to identify the distribution patterns of PW in Iran and relationship these patterns with elevation and distance to sea.



Materials and methods
In the present research, MODIS Aqua data (MYD05_L2. A V06) were used. The data with spatial resolution of 1 km (Near Infrared) have been selected. The selected study period covers since 2002/07/04 to 2017/07/25 (5501 days) that was exploited from NASA web site. These data are errors in the range between 5% and 10% (Kaufman & Gao,2003). The spatial resolution of the PW data are 1 km and temporal resolution is twice per day. Then using functions, these data converted from Level_2(swath data) to Level_3(grid data) and PW values interpolated on sinusoidal grid in 1800×2700 matrix with 1 km spatial resolution and daily temporal resolution. These data have been extracted for pixels within the political boundary of Iran and obtained a matrix with 1884080 rows (locations) and 200 columns (PW classes). Then on the base this matrix, calculated frequency distribution in 1 mm intervals from 0-199 mm for each of pixels (1884040×200). Finally, Principal Component Analysis (PCA) performed and frequency distribution patterns in Iran identified. The effects of altitude and distance to sea on these patterns, analyzed. The special program was developed and employed in MATLAB software for analysis the data.

Results and discussion
The spatial distribution of atmospheric humidity in Iran is controlled by the height above the sea level, distance to sea and moisture advection. Based on the results, the mean annual PW of the country is about 12 mm. PW is maximum near the southern and northern coasts of the country. The highest and lowest amount of PW near the Oman sea coast (31 mm) and the peak of Damavand (3 mm), respectively. The results of PCA showed that 95% of spatial variation of PW can be explained through 4 components. Based on the results, local factors like distance to sea and altitude are the most important in spatial distribution of PW. The study of the relationship between distance from the sea and frequency distribution patterns of PW shows the effect of distance and proximity to the sea in the frequency distribution patterns. This fact is more evident in the first and second components. Up to the distance of approximately 250 kilometers in the first component and 150 kilometers in the second component, as expected, the amount of PW will gradually decrease. From now on, the spatial pattern of PW is affected by altitude and morphology rather than by distance from sea and sealand breeze. In the third component, due to the formation of a moisture convergence belt at approximately 11 and 4 km, respectively, on the south and north coasts, the amount of atmospheric moisture is maximum. Then from 11 to 66 kilometers due to the Alborz Range, which is a short distance from the Caspian Sea, the amount of PW is minimal. Minimal atmospheric humidity on the southern coast occurs approximately at 250 kilometers away from the sea. In the South Coast, moisture penetrates the country further away from the coast, as it is smoother than the North Coast; so that sea moisture enters through the straits of Kahnouj area into the Jazmourian plain and distinguishes this area from its surrounding areas in terms of moisture. Moisture in the Caspian Sea enters the Tarom Valley through the Manjil Strait. The spatial distribution of moisture in the western, middle and eastern Persian Gulf coasts does not have a similar pattern; this difference is due to factors such as the dominance of the sea-land breeze in the eastern areas of Bushehr and the presence of small firth and bays in the area that increase the atmospheric moisture of these areas. than the environment around them. The amount of moisture in the coast of the Oman Sea is clearly different from PW of the Persian Gulf; PW MODIS is also overestimated in places such as near beaches with high temperatures and humidity.
In addition to the height above the sea level and distance to sea, the role of moisture advection should not be ignored. In the coastal region the variability caused by the high temperature and moisture advection and in areas far from coastline, height above the sea level causes many spatial differences in moisture distribution.

Conclusion
Although Iran is bounded from the north and south to the sea, atmospheric moisture is very low in the country. Based on the result, minimum and maximum difference of PW is about 27 mm, so that, in the region with more than 3000 m elevation PW is less than 6 mm, and the coast of the Oman Sea 60% of the time is above 26 mm. This result means, in spite of the great source of water in south and north, atmosphere of Iran suffers from poor moisture. Topography is a barrier to the entry of moisture north and south seas to the inland. In the inland region, altitude and in the coastal region, moisture advection and temperature, play crucial role in frequency distribution of PW. In this way, moisture advection is the important factor that well justified spatiotemporal variations of PW in Iran and through this, affected on water budget.

کلیدواژه‌ها [English]

  • Precipitable Water
  • Principal component analysis
  • Frequency distribution
  • MODIS
  • Iran
احمدی،‌ م.؛ داداشی رودباری،‌ ع.؛ احمدی،‌ ح. و علی‌بخشی،‌ ز. (1397). واکاوی ساختار دمای ایران مبتنی بر برون‌داد پایگاه دادة مرکز پیش‌بینی میان‌مدت هواسپهر اروپایی (ECMWF) نسخة ERA Interim، پژوهش‌های جغرافیای طبیعی، ‌50(2): ۳۵۳-372.
دارند، م. (1394). واکاوی وردایی زمانی- مکانی رطوبت جوی ایران‌زمین طی بازة زمانی 1979-2013، پژوهش‌های جغرافیای طبیعی، 47(2): ۲۱۳-239.
دوستکامیان، م.؛ جلالی، م. و طاهریان، ا.م. (1397). واکاوی شار همگرایی رطوبت و آب قابل بارش جو بارش‌های بهارۀ ایران، جغرافیا و مخاطرات محیطی،7(25): ۱۳۱-152.‎
عساکره، ح. و بیات، ع. (1392). تحلیل مؤلفه‌های اصلی مشخصات بارش سالانة شهر زنجان، جغرافیا و برنامه‌ریزی، 45:  ۱۲۱-142.
عساکره،‌ ح. و دوستکامیان،‌ م. (1393). تغییرات زمانی و مکانی آب قابل بارش در جو ایران،‌ تحقیقات منابع آب ایران،‌ 10(1): ۷۲-86.
عساکره،‌ ح. و دوستکامیان،‌ م. (1395). ناحیه‌بندی اقلیمی آب قابل بارش جو ایران‌زمین، نشریة جغرافیا و برنامه‌ریزی، 58: ۱۸۱-202.
عساکره،‌ ح.؛ دوستکامیان،‌ م. و قائمی،‌ ه. (1393). تحلیل تغییرات ناهنجاری‌ها و چرخه‌های آبِ بارش‌پذیر جو ایران،‌ پژوهش‌های جغرافیای طبیعی،‌ 46(4): ۴۳۵-444.
فلاح قالهری، غ. ع.؛ اسدی، م. و داداشی رودباری، ع. (1394). تحلیل فضایی پراکنش رطوبت در ایران، پژوهش‌های جغرافیای طبیعی، 47(4): ۶۳۷-650.
مباشری،‌ م.؛ پورباقر کردی،‌ س.م؛ فرج‌زاده اصل، م. و صادقی نائینی،‌ ع. (1389). برآورد آبِ بارش‌پذیر کلی با استفاده از تصاویر ماهواره‌ای مودیس و داده‌های رادیوساند ناحیة تهران،‌ فصل‌نامة مدرس علوم انسانی،‌ 14(1): ۱۰۷-126.
مسعودیان،‌ س. ا. (1390). آب‌وهوای ایران، مشهد: انتشارات شریعة توس.
موسوی بایگی، م. و اشرف،‌ ب. (1389). بررسی و مطالعة نمایة قائم هوای منجر به بارندگی‌های مخرب تابستانه (مطالعة موردی: مشهد)، آب‌وخاک، 24(5): ۱۰۳۶-1048.
یارنال، ب. (1385). اقلیم‌شناسی همدید و کاربردهای آن در مطالعات محیطی، ترجمة س. ا. مسعودیان، اصفهان: انتشارات دانشگاه اصفهان.
Acheampong, A. A.; Fosu, C.; Amekudzi, L. K. and Kaas, E. (2015). Comparison of precipitable water over Ghana using GPS signals and reanalysis products, Journal of Geodetic Science, 5: 163-170.
Ahmadi, M.; Dadashi Roudbari, A.; Ahmadi, H. and Alibakhshi, Z. (2018). Analysis of Iran Temperature Structure Based on ECMWF, ERA Interim Version, Physical Geography Research Quarterly,50(2): 353-372 (in Persian).
Asakereh, H. and Bayat, A. (2013). The Analysis of the Trend and the Cycles of Annual Precipitation Characteristics of Zanjan, Journal of Geography and Planning, 17(45): 121-142 (in Persian).
Asakereh, H. and Doostkamian, M. (2014). Tempo-Spatial Changes of Perceptible Water in the Atmosphere of Iran, Iran-Water Resources Research, 10(1): 72-86 (in Persian).
Asakereh, H. and Doostkamian, M. (2017). Climate Regionalization of Atmospheric Perceptible Water in Iran, Journal of Geography and Planning, 20(58): 181-202 (in Persian).
Asakereh, H.; Doostkamian, M. and Qaemi, H. (2014). Analysis of anomalies and perceptible water cycles in Iran atmosphere, Physical Geography Research Quarterly, 46(4): 435-444 (in Persian).
Barman, P.; Jade, S.; Kumar, A. and Jamir, W. (2017). Inter annual, spatial, seasonal, and diurnal variability of precipitable water vapour over northeast India using GPS time series, International journal of remote sensing, 38: 391-411.
Callahan, J. A. (2014). Estimation of precipitable water over the Amazon Basin using GOES imagery, Doctoral dissertation, University of Delaware.
Darand, M. (2015). Analysis of Spatio-Temporal Variation of Atmospheric Humidity in Iran during 1979-2013, Physical Geography Research Quarterly, 47(2): 213-239 (in Persian).
Doustkamian, M.; Jalali, M. and Taherian, A.M. (2018). Analysis of Moisture Flux Convergence and Precipitation Spring Precipitable Water in Iran, Geography and Environmental Hazard, 7(25): 131-152 (in Persian).
Fallah Ghalhari, Gh.; Asadi, M. and Dadashi Roudbari, A.A. (2016). Spatial Analysis of Humidity Propagation over Iran, Physical Geography Research Quarterly, 47(4): 637-650 (in Persian).
Gao, B. C. and Kaufman, Y. J. (2003). Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near‐infrared channels, Journal of Geophysical Research: Atmospheres, 108(D13).
Gourbaz, G. and Jin, S. (2017). Long-time variations of precipitable water vapour estimated from GPS, MODIS and radiosonde observations in Turkey, International Journal of Climatology, 37: 5170-5180.
Kaufman, Y. J. and Gao, B. C. (1992). Remote sensing of water vapor in the near IR from EOS/MODIS, IEEE Transactions on Geoscience and Remote Sensing, 30: 871-884.
Kern, A.; Bartholy, J.; Borbás, É. E.; Barcza, Z.; Pongrácz, R. and Ferencz, C. (2008). Estimation of vertically integrated water vapor in Hungary using MODIS imagery, Advances in Space Research, 41: 1933-1945.
Li, X.; Zhang, L.; Cao, X.; Quan, J.; Wang, T.; Liang, J. and Shi, J. (2016). Retrieval of precipitable water vapor using MFRSR and comparison with other multisensors over the semi-arid area of northwest China,Atmospheric research, 172: 83-94.
Lins, H. F. (1997). Regional streamflow regimes and hydroclimatology of the United States, Water Resources Research, 33: 1655-1667.
Liu, H.; Tang, S.; Hu, J.l Zhang, S. and Deng, X. (2017). An improved physical split-window algorithm for precipitable water vapor retrieval exploiting the water vapor channel observations, Remote sensing of environment, 194: 366-378.
Liu, Z.; Wong, M. S.; Nichol, J. and Chan, P. W. (2013). A multi‐sensor study of water vapour from radiosonde, MODIS and AERONET: a case study of Hong Kong, International Journal of Climatology, 33: 109-120.
Maghrabi, A. and Al Dajani, H. M. (2013). Estimation of precipitable water vapour using vapour pressure and air temperature in an arid region in central Saudi Arabia, Journal of the Association of Arab Universities for Basic and Applied Sciences, 14: 1-8.
Malmusi, S. and Boccolari, M. (2010). Upper and middle precipitable water calculated from METEOSAT-8/-9 tropospheric humidity and NCEP/NCAR temperatures, Atmospheric Research, 95: 8-18.
Means, J.D. (2011). GPS precipitable water measurements used in the analysis of California and Nevada climate, University of california, san diego.
Mousavi Baygi, M. and Ashraf, B. (2010). Investigation and study of vertical weather profile leading to destructive summer rainfall (case study: Mashhad), Journal of water and soil, 24(5): 1036-1048 (in Persian).
Prasad, A. K. and Singh, R. P. (2009). Validation of MODIS Terra, AIRS, NCEP/DOE AMIP‐II Reanalysis‐2, and AERONET Sun photometer derived integrated precipitable water vapor using ground‐based GPS receivers over India, Journal of Geophysical Research: Atmospheres, 114(D5).
Reitan, C. H. (1963). Surface dew point and water vapor aloft, Journal of Applied Meteorology, 2(6): 776-779.
Seidel, D. J. (2002). Water vapor: Distribution and trends, Encyclopedia of Global Environmental Change, 750-752.
Trenberth, K. E.; Fasullo, J. and Smith, L. (2005). Trends and variability in column-integrated atmospheric water vapor, Climate dynamics, 24: 741-758.
Wang, H.; Wei, M.; Li, G.; Zhou, S. and Zeng, Q. (2013). Analysis of precipitable water vapor from GPS measurements in Chengdu region: Distribution and evolution characteristics in autumn, Advances in Space Research, 52: 656-667.
Wong, M. S.; Jin, X.; Liu, Z.; Nichol, J. and Chan, P. W. (2015). Multi‐sensors study of precipitable water vapour over mainland China,International Journal of Climatology, 35: 3146-3159.
Yarnal, B. (2006). Translated by: Masoodian, S.A. Synoptic Climatology: An Environmental Studies, Isfahan University Press.