برآورد محصول و کاه گندم دیم با استفاده از تصاویر Landsat-OLI

نوع مقاله : مقاله کامل

نویسندگان

1 دانشجوی کارشناسی ارشد سنجش از دور و سیستم‌های اطلاعات جغرافیایی، دانشکدة جغرافیا، دانشگاه تهران

2 دانشیار گروه سنجش از دور و سیستم‌های اطلاعات جغرافیایی، دانشکدة جغرافیا، دانشگاه تهران

چکیده

پیش‏بینی عملکرد محصول از مهم‌ترین ابزارهای برنامه‏ریزی به‌منظور تأمین به‌موقع محصولات زراعی، مخصوصاً محصول استراتژیک گندم، است. در این تحقیق پیش‏بینی عملکرد گندم دیم در بخشی از شهرستان گیلان‏غرب با استفاده از شاخص‏های گیاهی  NDVI و GLAI و داده‏های زمینی عملکرد گندم دیم و کاه مربوط به 35 قطعه زمین زراعی براساس ایجاد رابطة رگرسیون چندمتغیره بین شاخص‌های گیاهی و داده‌های زمینی در سال‌های زراعی 2014-2018 انجام گرفت. در بازة زمانی 2014-2018، نمودار دورة رشد محصول با استفاده از هر شاخص رسم شد و پارامتر هندسی مربوط به منحنی رشد گیاه مانند مساحت زیرنمودار از آن‌ها استخراج شد. نتایج این تحقیق نشان داد GLAI ضریب تعیین بیشتری نسبت به شاخص NDVI دارد. همچنین، رابطة رگرسیون چندمتغیره با 865 .0R2= برای برآورد میزان کاه و یک رابطه با 851 .0R2= برای گندم به‌دست آمد که درنهایت با استفاده از این روابط مقدار گندم برای کل منطقه برابر 295.606 تن و مقدار کاه برابر 705.032 تن برآورد شد. از بین مراحل مختلف رشد گیاه نیز مرحلة تشکیل گل‌آذین با 65 .0R2= بیشترین ضریب تعیین جهت برآورد میزان محصول گندم و کاه را به خود اختصاص داد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating of Biomass and Wheat Dry-Farming Using Landsat OLI Imagery

نویسندگان [English]

  • Milad Bagheri 1
  • Ali Darvishi Bolorani 2
  • Saeid Hamzeh 2
  • Mohammadreza Jelokhani Niaraki 2
1 Master Student in GIS and Remote Sensing, Faculty of Geography, University of Tehran
2 Associate Professor of GIS and Remote Sensing, Faculty of Geography, University of Tehran
چکیده [English]

Introduction
With a dominant arid to semiarid climate, Iran enjoys a diverse agro-ecosystem. Despite the country’s enormous territorial span, its agricultural lands encompass areas with limited precipitation and ground water resources. Dry-farming is a common practice in Iran, which faces certain challenges in areas like pre-harvest estimation of straw and crop yields. Sustainable agricultural activities require precise information on crops, which can be obtained from remote sensing data. This study proposes a remote sensing vegetation index-based phenology modeling to estimate the straw and crop yield of dry-farmed wheat via Landsat OLI imagery in Gilangharb of Kermanshah province in Iran.
Materials and Methods
A satellite-based straw and crop yield estimation method was developed for dry-farmed wheat, using Landsat OLI imagery. Field data were measured in metric ton per hectare through farm-based measurements of the net weight of wheat crop and straw, produced in dry-farming. The data were obtained through direct field surveys during the harvesting time. Using GPS, the study managed to single out the wheat farms from their surrounding farmlands. It also used time series of Landsat-8 satellite imagery from mid-February to late-May in the study years (2014-2018). Once the images got pre-processed, they were classified via a multi-temporal image classification procedure, where Normalized Difference Vegetation Index (NDVI) and Green Leaf Area Index (GLAI) were adapted as vegetation indices for wheat phenology modeling to be linked with the measured straw and crop yields. Annual phenology curves of both indices for each farm were statistically investigated, using the geometric characteristics of the phenology curve. The statistical relation between phenology curves and straw and crop yield was then calculated. In order to evaluate the results accuracy, field-measured data on straw and crop yield were compared with the obtained results.
Results and Discussion
Kappa coefficient and overall accuracy were calculated using classification error matrix in order to evaluate the overall accuracy of image classification. Results accuracy was assessed, using the area of the curve of phenology diagrams for both vegetation indices of all wheat farms as well as the regression relations and coefficient of determination (R2) between indices and the measured wheat crop and straw. From the five phonological growth stages of wheat, namely germination/emergence, tillage, stem elongation, boot, heading/flowering, and grain-fill/ripening, the penultimate stage (flowering) had the highest correlation with the wheat crop and straw. The study results revealed that green leaf area index (GLAI) had a higher coefficient of determination than NDVI. GLAI represents the main part of the photosynthesis in plants (leaf), the main factor for growth process of wheat. Hence, it had closer association with the plant's production process. Therefore, GLAI outperformed NDVI in wheat phenology modeling for crop and straw estimation, though both indices were employed in the modeling since the main goal of this study was to obtain a more precise multivariate regression correlation. 
Conclusion
Using a multivariate regression analysis along with both GLAI and NDVI, the straw and crop yield of dry-farmed wheat was estimated with a high coefficient of determination (about 0.8). This coefficient was slightly higher for straw (R2=0.865) than wheat crop. Results of phenology investigation showed the model’s ability to estimate the wheat yield. Furthermore, it was revealed that out of the five phonological growth stages of wheat, the flowering stage (R2=0.65) had the highest correlation coefficient.

کلیدواژه‌ها [English]

  • multivariate regression
  • wheat crop and straw estimation
  • phonological stages
  • GLAI
  • NDVI
  • Landsat-OLI
عزیزی، ‌قاسم و یار‌احمدی،  ‌داریوش. (1382). بررسی ارتباط پارامترهای اقلیمی و عملکرد گندم دیم با استفاده از مدل رگرسیونی (مطالعة موردی دشت سیلاخور)، پژوهش‌های جغرافیایی، 35(۴۴): 23-30.‎
زند، بهنام و لعل‌نیا، علی‌اکبر. (1393). کتاب زراعت غلات، تهران: انتشارات پیام نور.
نصرالهی، محمد؛ ممبنی، مریم؛ ولی‌زاده، سارا و خسروی، حسن. (1393). بررسی تأثیر روند تغییرات کاربری اراضی/ پوشش زمین بر وضعیت منابع آب زیرزمینی، با استفاده از تصاویر ماهواره‌ای (مطالعة موردی: دشت گیلان‌غرب)، فصل‌نامة پژوهش‌های اطلاعات جغرافیایی، 23(۹۱): 89-97.‎
وزارت جهاد کشاورزی (1384). راهنمای داشت گندم. سازمان تحقیقات و آموزش کشاورزی.
Azizi, Gh. and Yarmohammadi, M. (2003). Investigation of relationship between climate parameters and wheat yield using linear regression model (Silakhor plain studies), Quarterly Journal of Geographic Research, PP. 1-35.
Bazgeer, S. (2005). Land Use Change Analysis In The Submountainous Region Of Punjab Using Remote Sensing, Gis, And Agrometerological Parameters (Doctoral dissertation, Punjab Agricultural University; Ludhiana), PP. 25-39.
Bazgeer, S.; Kamali, GH. and Mortazavi, A. (2007). Wheat Yield Prediction through Agrometeorological Indices for Hamedan, Iran, Biaban Journal, 12: 33-38.
Bazgeer, S.; Kamali, GH. A.; Sedaghatkerdar, A. and Moradi, A. (2008). Pre-harvest Wheat Yield Prediction Using Agrometeorological Indices for Different Regions of Kordestan Province, Iran, Research Journal of Environmental Sciences, 2(4): 275-280.
Fensholt, R.; Rasmussen, K.; Nilson, T.T. and Mbow, C. (2009). Evaluation of Earth Observation Based Long Term Vegetation Trends-Intercomparing NDVI Time series Trend Analysis Consistency of Sahel From AVHRR GIMMS, Terra MODIS and SPOT VGT Data, Remote Sensing of Environment, PP. 1-13.
Food and Agriculture Organization of the United Nations (FAO) (2011). Global Strategy to Improve Agricultural and Rural Statistics, Report, No. 56719-GB; FAO: Rome, Italy.
Geng, Y.B.;  Dong, Y.S. and  Meng, W.Q. (2000). Progress of terrestrial carbon cycle studies. Advance in Earth Science, 19: 297-306.
Hathout, S. and Carlyle, S. (2003). The Use of Remote Sensing and Geographical Information Systems for the Forecasting of Wheat Yield by Ostan in Iran. The Arab World Geographer, 6(4)” 221-236.
Huang, J.; Sedano, F.; Huang, Y.; Ma, H.; Li, X.; Liang, S.; ... and Wu, W. (2016). Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agricultural and forest meteorology, 216: 188-202.
Huang, J.; Ma, H.; Sedano, F.; Lewis, P.; Liang, S.; Wu, Q.; ... and Zhu, D. (2019). Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model. European Journal of Agronomy, 102: 1-13.
Jihad, M. o. A. (2014). Agronomical statistics, 2012-2013 agronomical year.  (in Persan).
Jégo, G.; Pattey, E. and Liu, J. (2012). Using leaf area index, retrieved from optical imagery, in the STICS crop model for predicting yield and biomass of fiel crops. Field Crops Res. 131: 63-74.
Labus, M. P.; Nielsen, G.; Alawrence, R.L.; Engeld, R. and Long, S. (2002). Wheat Yield Estimates Using Multi-temporal NDVI Satellite Imagery Int, Journal of Remote Sensing, 23(20): 4169-4180.
Morison, J. I. and Morecroft, M. D. (Eds.) (2006). Plant growth and climate change.
Rembold, F. and Maselli, F. (2004). Estimating inter-annual crop area variation using multi-resolution satellite sensor images, International Journal of Remote Sensing, 25(13): 2641-2647.
Rötter, R. P.; Carter, T. R.; Olesen, J. E. and Porter, J. R. (2011). Crop-climate models need an overhaul, Nature Climate Change, 1(4): 175-177.
Sadras, V. O. and McDonald, G. (2012). Water use efficiency of grain crops in Australia: principles, benchmarks and management. Change, 11(19): 24-33.
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2): 127-150.
Tucker, C.J.; Holben, B.N.; Elgin, J.H., Jr. and McMurtrey, J.E. (1980). III Relationship of spectral data to grain yield variation. Photogramm. Eng. Remote Sensing, 46: 657-666.
UN Food and Agriculture Organization (FAO) Global Information and Early Warning System(GIEWS) (2013). Available online: http://fao.org/giews (accessed on 18 February 2013).
Zend, B. and Lal Nia, A. (2014). Crop Growing, Tehran: Payam Noor University (in Persan).