Monitoring Heavy Metals from Dust Storms in Wheat Agronomic Ecosystem Soils in Southern Fars Province

Document Type : Full length article


1 Professor, Department of Physical Geography, University of Mohaghegh Ardabili, Ardabil, Iran

2 Ph.D in Climatology, University of Malayer


Heavy metals in dust particles play an important role in contamination of agricultural soils, being one of the most dangerous pollutants in the environment due to their bioaccumulation power. In other words, they are able to accumulate inside the bodies of living organisms and increase their concentration with greater exposure to pollutants. Heavy metals are generally referred to as a group of elements with a specific gravity, greater than 6 g/cm3, more than 50 g of atomic weight. The most important heavy metals, important for environmental protection, include cadmium, arsenic, cobalt, vanadium, zinc, mercury, iron, manganese, nickel, lead, chromium, and copper which owing to their non-biodegradability in the nature as well as long life span, are considered important pollutants in the environment. Moreover, pollution of agricultural lands with metals through chemical activities like sewage sludge, chemical fertilizers, and industrial wastewater along with the deposition of dry and wet dust particles from dust storm phenomenon can be seen as one of the most important sources of pollutants for wheat agronomic ecosystems to heavy metals. Pollution with heavy metals from dust storms is considered a serious problem due to toxicity, degradability, and cumulatively. Following the deposition of dust particles, contaminated with heavy metals on crop fields, the contaminants are combined with the soil solution. As the plants absorb the heavy metals in this way, they pave the road for them to get transferred to the food chain. As a result, deposition of dust particles with heavy metals in the soil of wheat agro ecosystems can endanger human health and the present research aims at identifying the heavy metals content in wheat fields, which is the first step to reduce this health risk.
Materials and Methods
This study obtained the data concerning the dust storms in a 16-year period (2000-2015), belonging to Larestan, Jahrom, Darab, and Fasa Stations, from the Meteorological Organization. It then analyzed the frequency of dust storms on both a seasonal and an annual scale. Next, the dust particle entry pathway to the study area on May 12, 2018 was performed, using HYSPLIT model. This was followed by obtaining soil samples from wheat farms in Larestan, Fasa, Darab, and Jahrom. Four wheat ecosystems got identified in each study area and soil sampling was performed from a depth of 1 cm at an area of 400 cm2 in each ecosystem. The soil sampling was divided into two stages: before and after the dust storm. Pre-dust storm sampling took place in December and March, and post-dust storm one happened in May and June. Soil samples were transferred to the laboratory, where their concentration of lead, cadmium, and nickel was measured via flame atomic absorption spectrometry. Finally, the amounts of heavy metals in the soil samples were evaluated by the Igeo index.
Results and Discussion
The maximum frequency of dust storms in the southern part of Fars Province is due in warm months, especially in the spring, with an average of 18 dust storms per season. The minimum occurrence rate of this environmental phenomenon belongs to the cold months, especially in the autumn, which occurs less than once a season. In addition, among the stations in the study area, Fasa Station usually faces the maximum annual dust storms with 42 occurrences, with Jahrom, Darab, and Lar Stations in the next ranks with 39, 25, and 19 storms per year, respectively. The path of dust particles entering the study area on May 12, 2018 was tracked, using HYSPLIT Model in a backward method. The results showed that deployment of thermal low-pressure in the Persian Gulf had destabilized the atmosphere and Shamal winds moved through the deserts of Iraq and Saudi Arabia to the Persian Gulf, both contributing to the transportation of a massive amount of dust particles into the southern provinces of Iran. Moreover, the results showed that concentrations of lead and cadmium in the soil of wheat agronomic ecosystems of Fars Province increased under the influence of dust storms, whereas the concentration of nickel remained unchanged. The highest concentrations of heavy metals were in Darab and Lar ecosystems and the lowest in Jahrom and Fasa. The mean comparison test showed a significant difference between the concentrations of heavy metals in agricultural ecosystems in southern Fars province before and after the dust storm at 0.05 and 0.01 levels. Also, dust storms increased the heavy metals in the soil of wheat ecosystem. Furthermore, the land pollution standard showed that in the agricultural wheat ecosystems of Darab, the concentration of all metals was higher than the global limit, being in the moderate to severe pollution category.
This study investigated the effect of desert dust on heavy metal concentration in soil ecosystems, measuring their concentrations before and after the occurrence of dust and comparing their differences with statistical tests. It showed that the concentration of lead and cadmium in the soil of wheat agronomic ecosystems increased under the influence of dust storms, while that of nickel remained unchanged.
In addition to combustion sources, industries and factories, traffic, and the use of fertilizers and municipal wastewater, desert dust particles contribute to air pollution, too. Higher concentrations of heavy metals in agricultural soil can affect health and damage environmental ecosystems and organisms, especially humans, the chief consumers of these agricultural soil products. Deposition of dust particles, caused by dust storms in cultivated wheat soils, results in increased concentrations of heavy metals in the soil and its uptake by plant roots and movement to the crops put human health in jeopardy. Because wheat is one of the most consumed morsels in human diet and given that movement of toxic substances as well as heavy metals through soil, roots, and plants causes them to accumulate in wheat, in order to achieve world-class quality and health products, some solutions must be offered to reduce heavy metal concentrations in consumer products. Thus, this study’s results could and should be made available to not only planners but also agricultural and health experts.


اتابکی، م.ر. و لطفی، ع. (1397). بررسی غلظت فلزات سنگین (سرب، کادمیوم، روی، و مس) در خاک مناطق مختلف اصفهان در سال 1396، فصل‏نامة پژوهش در بهداشت محیط، 4(1): 21-30.
احمدی دوآبی، ش.؛ افیونی، م.؛ خادمی، ح. و کرمی، م. (1395). آنالیز آماری آلودگی فلزات سنگین در گردوغبار اتمسفری استان کرمانشاه، نشریة علوم آب‏وخاک (علوم و فنون کشاورزی و منابع طبیعی)، 20(76): 29-43.
افشاری، ع.؛ خادمی، ح. و حجتی، س. (1394). ارزیابی پتانسیل خطرپذیری آلودگی فلزات سنگین در خاک‏های مرکزی استان زنجان بر اساس انواع شاخص‏های آلودگی، نشریة پژوهش‏های حفاظت آب و خاک، 22(6): ۲۱-40.
امیدوار، ک. و امیدی، ز. (1392). تحلیل پدیدة گردوغبار در جنوب و مرکز استان فارس، مجلة کاوش‏های جغرافیایی مناطق بیابانی، 1: ۸۵-114.
بهروزی، م.؛ بازگیر، س.؛ نوری، ح.؛ نجاتیان، م.ع. و اخضری، د. (1398). شناسایی کانون‏های گردوغبار و بررسی اثرهای آن بر برخی صفات رویشی و زایشی انگور در دشت ملایر، مجلة مهندسی اکوسیستم بیابان، 8(23): ۵۹-72.
بهروش، ف.؛ محمودی قرایی، م.ح.؛ قاسم‏زاده، ف. و عوض‏مقدم، س. (1394). بررسی آلودگی فلزات سنگین در غبارهای ترافیکی شهر مشهد و تعیین منشأ آن با استفاده از روش استخراج ترکیبی، نشریة زمین‏شناسی مهندسی و محیط زیست، 95: ۱۴۱-150.
پرداختی، ع.ر. و زاهد، ف. (1397). ارزیابی شاخص‏های آلودگی و ریسک اکولوژیکی مربوط به فلزات سنگین در خاک‏های اطراف جاده‏های برون‏شهری ایران، نشریة مطالعات علوم محیط زیست، 3(3): ۷۶۹-781.
ترکاشوند، م.ق.؛ و کیانی، م. (1396). تجزیه‏وتحلیل وضعیت آلودگی هوا ناشی از اثرات اقلیمی ریزگردها و طوفان‏های گردوغبار در مناطق جنوبی استان همدان، مجلة علوم و تکنولوژی محیط ‏زیست، 19(۴): 15-33.
جوان سیامردی، ص.؛ رضایی کهخا، م.ر.؛ صفایی مقدم، ع. و نوری، ر. (1393). بررسی غلظت فلزات سنگین (آهن، نیکل، مس، روی، سرب) در خاک کشاورزی بخش مرکزی سیستان، نشریة مهندسی بهداشت محیط، 2(1): ۴۶-53.
خوش‏کیش، ا.؛ علیجانی، ب. و حجازی‏زاده، ز. (1390). تحلیل سینوپتیکی گردوغبار در استان لرستان، نشریة تحقیقات کاربردی علوم جغرافیایی، 11(21): 91-110.
خیرآبادی، ح.؛ افیونی، م.؛ ایوبی، ش.ا. و سفیانیان، ع.ر. (1394). ارزیابی خطر ناشی از فلزات سنگین در خاک و گیاهان زراعی خوراکی عمده در استان همدان، نشریة علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی)، 19(74): ۲۷-37.
راست‏منش، ف.؛ مراونی، ف.؛ مهرابی کوشکی، م. و زراسوندی، ع.ر. (1394). ارزیابی غنی‏شدگی فلزات سنگین در مزارع گندم شهر اهواز، نشریة علوم و مهندسی محیط زیست، 2(4): ۱۹-31.
رجبی، م. و سوری، ب. (1394). ارزیابی مقادیر فلزات سنگین در ذرات گردوغبار باریده بر شهرهای سنندج، خرم‏آباد و اندیمشک در غرب ایران 139۱-139۲، مجلة سلامت و محیط، 8(1): ۱۱-۲۲.
ریوندی، ا.؛ میررکنی، م. و محمدی‏ها، ا. (1392). بررسی تشکیل و انتشار طوفان‏های گردوغبار ورودی به غرب و جنوب غرب ایران با استفاده از مدل پخش لاگرانژی ذرات HYSPLI، نشریة پژوهش‏های اقلیم‏شناسی، 4(13، 14): ۱۶-۱.
زنگنه، م. (1393). آب و هواشناسی طوفان‏های گردوغبار در ایران، دو فصل‏نامة آب و هواشناسی کاربردی، 1(1): 1-12.
سلمان‏زاده، م.؛ سعیدی، م.ف. و نبی بیدهندی، غ.ر. (1391). آلودگی فلزات سنگین در غبارهای ته‏نشین‏شدة خیابانی شهر تهران و ارزیابی زیست‏اکولوژی آن‏ها، مجلة محیط‏شناسی، 61: ۹-18.
سیستانی، ن.پ.؛ معین‏الدینی، م.؛ خراسانی، ن.ا.؛ حمیدیان، ا.ح.؛ علی طالشی، م.ص. و عظیمی یانچشمه، ر. (1396). آلودگی فلزات سنگین در خاک‏های مجاور صنایع فولاد کرمان: ارزیابی غنای فلزی و درجة آلودگی، مجلة سلامت و محیط زیست، 10(1): ۷۵-86.
صلاحی، ب. و بهروزی، م. (1398). شناسایی کانون گردوغبار و آنالیز فیزیکوشیمیایی ذرات آن در ایستگاه دزفول، طرح پژوهشی، معاونت پژوهشی و فناوری دانشگاه محقق اردبیلی.
عزیزی، ق.؛ شمسی‏پور، ع.ا.؛ میری، م. و صفر راد، ط. (1391). تحلیل آماری - همدیدی پدیدة گردوغبار در نیمة غربی ایران، مجلة محیط‏شناسی، 38(3): 123-134.
کریمیان، ب.؛ لندی، ا.؛ حجتی، س. و احدیان، ج. (1395). بررسی خصوصیات فیزیکی، شیمیایی، و کانی‏شناسی گردوغبار شهر اهواز، مجلة تحقیقات آب ‏و خاک ایران، 47(1): ۱۵۹-173.
کیان‏پور، س. و سبحان اردکانی، س. (1396). بررسی غلظت‏های روی، سرب، کادمیوم، و مس در گندم و نان مصرفی در شهر همدان، مجلة بهداشت مواد غذایی، 7(28): ۸۱-98.
Abdollahi, S.; Karimi, A.; Madadi, M.; Ostad-Ali-Askari, K.; Eslamian, S. and Singh, V. P. (2018). Lead Concentration in Dust Fall in Zahedan, Sistan and Baluchistan Province, Iran, Journal of Geography and Cartography, 1(2).
Afshari, A.; Khademi, H. and Hojjati, S. (2016). Assessment of Heavy Metals Pollution Risk In Soils of Central Zanjan Province Based on Pollution Indices, Journal of Water And Soil Conservation, 22(6): 21-40.
Agricultural Statistics of Fars Province (2015). Fars Agricultural Jihad Organization, Deputy of Planning and Economics, Bureau of Statistics and Information Technology and Network Equipment.
Ahmadi Doabi, SH.; Afyuni, M.; Khademi, H. and Karami, M. (2016). Statistical Analysis of Heavy Metal Contamination in Atmospheric Dusts of Kermanshah Province, Iran, Journal of Water and Soil Science, 20 (76): 29-43.
Al-Jumaily, K. J. and Ibrahim, M. K. (2013). Analysis of synoptic situation for dust storms in Iraq, International Journal. Energ. Environ, 4(5): 851-858.
Altaş, L. (2009). Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge, Journal of hazardous materials, 162(2-3): 1551-1556.
Atabaki, M.R. and Lotfi, A. (2018). Investigation of Heavy Metal Soil Concentration (Pb, Cd, Zn and Cu) In Different Areas of Isfahan in 2017, Journal of Research in Environmental Health, 4(1): 23-35.
Azizi, Gh.: Shamsipour, A. A.; Miri, M. and Safarrad, T. (2012). Statistic and Synoptic Analysis of Dust Phenomena in West of Iran, Journal of Environment Studies, 38(3): 123-134.
Behravesh, F.; Mahmudy Gharaie, M. H.; Ghassemzadeh, F. and Avaz Moghaddam, S. (2015). Determination of Heavy Metals Pollution In Traffic Dust of Mashhad City, and Its Origin by Using “Selective Sequential Extraction” (SSE) Procedure, Journal Engineering and Environmental Geology, 24(95): 141-150.
Behrouzi, M.; Bazgeer, S.; Nouri, H.; Nejatian, M.A. and Akhzari, D. (2019). Dust Storms Detection and Its Impacts on the Growth and Reproductive Traits of Grape Vine (Vitis Vinifera) In Malayer Plain, Journal of Desert Ecosystem Engineering, 8(23): 59-72.
Bolan, S.; Kunhikrishnan, A.; Seshadri, B.; Choppala, G.; Naidu, R.; Bolan, N.S.; Ok, Y.S.; Zhang, M.; Li, C.G.; Li, F. and Noller, B. (2017). Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal (loid) s in complementary medicines, Environment international, 108: 103-118.
Broomandi, P.; Dabir, B.; Bonakdarpour, B. and Rashidi, Y. (2017). Identification of dust storm origin in South–West of Iran, Journal of Environmental Health Science and Engineering, 15(1): 16.
Draxler, R.; Stunder, B.; Rolph, G.; Stein, A. and Taylor, A. (2014). Hysplit4 User's Guide Version 4.9, 2009, September.
Gall, J.E.; Boyd, R.S. and Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: a review, Environmental monitoring and assessment, 187(4):  201.
Geraid R. (1992). The identification of point soures of heavy metal in industrially impacted water way by peripnyton and surface sediment monitoring. Water Air Soil Pollut, 65: 175-90.
Jaradat, Q.M.; Momani, K.A.; Jbarah, A-AQ. and Massadeh, A. (2004). Inorganic analysis of dust fall and office dust in an industrial area of Jordan, Environmental Research, 96(2): 139-44.
Javan Siamardi, S.; Rezaee Kahkha, M. R.; Safaei Moghaddam, A. and Noori, R. (2014). Survey of Heavy Metals Concentration (Fe، Ni، Cu، Zn، Pb) In Farmland Soils of Sistan Central Part, Journal Of Environmental Health Engineering, 2(1): 46-53.
Karimian, B.; Landi, A.; Hojati, S. and Ahadian, J. (2016). Physicochemical and Mineralogical Characteristics of Dust Particles Deposited In Ahvaz City, Iranian Journal of Soil and Water Research, 47(1): 159-173.
Kheirabadi, H.; Afyuni, M.; Ayoubi, S. and Sofianian, A.R. (2016). Risk Assessment of Heavy Metals In Soils And Major Food Crops in the Province of Hamadan, Journal of Hydrology and Soil Science, 19(4): 27-38.
Khuzestani, R.B. and Souri, B. (2013). Evaluation of heavy metal contamination hazards in nuisance dust particles, in Kurdistan Province, western Iran, Journal of Environmental Sciences, 25(7): 1346-54.
Kianpoor, S. and Sobhanardakani, S. (2017). Evaluation of Zn, Pb, Cd and Cu Concentrations in Wheat and Bread Consumed In Hamedan City, Journal of Food Hygiene, 7 (28): 83-92.
Koshkish, A.; Alijani, B. and Hejazizadeh, Z. (2011). Synoptic Analysis of Dust Storms in Tthe Lorestan Province, Iran, Journal of Geographical Science, 18(21): 91-110.
Li, F.L.; Shi, W.; Jin, Z.F.; Wu, H.M. and Sheng, G.D. (2017). Excessive uptake of heavy metals by greenhouse vegetables, Journal of Geochemical Exploration, 173, 76-84.
Lu, X. L.; Wang, K. L. J.; Huang and Zhai, Y. (2009). Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J. Hazard. Mater, 161: 1058-1062.
Maina, E. G.; Gachanja, A. N.; Gatari, M. J. and Price, H. (2018). Demonstrating PM 2.5 and road-side dust pollution by heavy metals along Thika superhighway in Kenya, sub-Saharan Africa, Environmental monitoring and assessment, 190(4): 251.
McGowan, H. and Clark, A. (2008). Identification of dust transport pathways from Lake Eyre, Australia using Hysplit, Atmospheric Environment, 42(29): 6915-6925.
Mugoša, B.; Đurović, D.; Nedović-Vuković, M.; Barjaktarović-Labović, S. and Vrvić, M. (2016). Assessment of ecological risk of heavy metal contamination in coastal municipalities of Montenegro, International journal of environmental research and public health, 13(4): 393.
Omidvar, K. and Omidi, Z. (2013). The Analysis of Dust Phenomenon in the Southern and Central Fars Province, Journal of Geographical Research on Desert Areas, 1(1): 85-114.
Pardakhti, A.R. and Zahedi, F. (2018). Pollution Indices and Ecological Risk Assessment For Heavy Metals in Side Soils of Interurban Roads, Iran, Journal of Environmental Sciences Studies, 3(3): 769-781.
Rai, P.K.; Lee, J.; Kailasa, S.K.; Kwon, E.E.; Tsang, Y.F.; Ok, Y.S. and Kim, K.H. (2018). A critical review of ferrate (VI)-based remediation of soil and groundwater, Environmental research, 160: 420-448.
Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F. and Kim, K.H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management, Environment International, 125: 365-385.
Rajabi, M. and Souri, B. (2015). Evaluation of Heavy Metals among Dust fall Particles of Sanandaj, Khorramabad and Andimeshk Cities in Western Iran2012-2013, IRANIAN Journal of Health and Environment, 8(1): 11-22.
Rastmanesh, F.; Maravani, F.; Mehrabi Koshki, M. and Zarasondi, A.R. (2015). Evaluation of Heavy Metal Enrichment in Wheat Farms of Ahvaz, Journal of Environmental Science and Engineering, 5(8): 19-21.
Rivandi, A.; Mirrokni, M. and Mohammadiha, A. (2013). Investigation of Formation and Propagation of Dust Storms Entering to the West And Southwest of Iran Using Lagrangian Particle Diffusion Model, HYSPLIT, Journal of Climate Research, 13: 1-16.
Salahi, B. and Behrouzi, M. (2018). Detection Of Dust Source And Physico-Chemical Analysis of Dust Particles at Dezful Station, Department of Physical Geography, Faculty of Literature and Humanities, University Of Mohaghegh Ardebili.
Salmanzadeh, M.; Saeedi, M. and Bidheni, GH. N. (2012). Heavy Metals Pollution in Street Dusts of Tehran and Their Ecological Risk Assessment, Journal of Environmental Studies, 38(1): 9-18.
Shen, Z.J.; Chen, Y.S. and Zhang, Z. (2017). Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China. Ecotoxicology and environmental safety, 143: 19-27.
Sistani, N.; Moeinaddini, M.; Khorasani, N.; Hamidian, A. H.; Ali-Taleshi, M. S.; Azimi Yancheshmeh, R. (2017). Heavy Metal Pollution in Soils nearby Kerman Steel Industry: Metal Richness and Degree of Contamination Assessment, Journal of Health and Environment, 10(1): 75-86.
Soleimani, M.; Amini, N.; Sadeghian, B.; Wang, D. and Fang, L. (2018). Heavy metals and their source identification in particulate matter (PM2.5) in Isfahan City, Iran, Journal of Environmental Sciences, 72: 166-175.
Sterckeman, T.; Douay, F.; Proix, N.; Fourrier, H. and Perdrix, E. (2002). Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France, Water, Air, and Soil Pollution, 135(1-4): 173-194.
Tokalioglu, S. and Kartal, S. (2006). Multivariate analysis of the data and speciation of heavy metals in street dust samples from the organized industrial district in Kayseri (Turkey), Atmos. Environ, 40: 2797-2805.
Torkashvand, M. GH and Kiani, M. (2018). Analysis of Air Pollution Status Caused By Climatic Effects of Aerosols and Dust Storms in South Regions of Hamadan Province, Journal of Environmental Science and Technology, 19(4): 15-33.
Wang, Y.; Stein, A.F.; Draxler, R.R.; de la Rosa, J. and Zhang, X. (2011). Global sand and dust storms in 2008: Observation and HYSPLIT model verification, Atmospheric Environment 45(35): 6368-6381.
Xuan, J.; Sokolik, I. N.; Hao, J.; Guo, F.; Mao, H. and Yang, G. (2004). Identification and characterization of sources of atmospheric mineral dust in East Asia, Atmospheric Environment, 38(36): 6239-6252.
Zanganeh, M. (2014). Climatological Analysis of Dust Storms in Iran, Journal of Applied Climatology, 1(1): 1-12.
Zhang, H.; Wu, C.; Gong, J.; Yuan, X.; Wang, Q.; Pei, W. and Zhang, H. (2017). Assessment of heavy metal contamination in roadside soils along the Shenyang-Dalian Highway in Liaoning Province China, Polish Journal of Environmental Studies, 26(4).