تعاملات حاره- برون‏ حاره و بارش‏های فرین و فراگیر ایران در رابطه با ابرهای پرشار حاره‏ای مطالعة موردی: 25 و 26 مارس 2019

نوع مقاله : مقاله کامل

نویسندگان

1 دانشجوی دکتری اقلیم ‏شناسی، دانشگاه زنجان، زنجان، ایران

2 استادیار گروه اقلیم ‏شناسی دانشگاه زنجان، زنجان، ایران

3 استاد گروه اقلیم ‏شناسی، دانشگاه خوارزمی، تهران، ایران

4 استاد گروه اقلیم ‏شناسی، دانشگاه زنجان، زنجان، ایران

5 استادیار گروه اقلیم شناسی، دانشگاه زنجان، زنجان

چکیده

روزهای 25 و 26مارس سال 2019 به عنوان‏ روزهای بارش فرین و فراگیر ایران به‏منظور مطالعة انتقال رطوبت حاره به برون‏حاره و نقش آن در بروز بارندگی انتخاب شد. بررسی‏ها نشان‏دهندة تعاملات حاره- برون‏حاره در روزهای انتخابی و گسترش ابرها از حاره به برون‏حاره تحت عنوان ابرهای پُرشار حاره‏ای (TP) است. برای شناسایی ابرها از تصاویر ماهواره‏ای متئوست IR استفاده شد. به‏منظور بررسی شرایط سینوپتیکی همراه با TP، نقشه‏های سینوپتیکی ارتفاع ژئوپتانسیل، رودبادهای جبهة قطبی، و جنب حاره در ترازهای 300 و 200 هکتوپاسکال تهیه شد. تصاویر ماهواره‏ای نشان از دو باند TP با دو منشأ اقیانوسی و قاره‏ای دارد. نتایج نشان داد عوامل صعود دینامیکی عرض میانی و جنب حاره که به مناطق حاره نفوذ کرده‏اند به انتقال ابرها به مناطق برون‏حاره منجر شده‏اند. TPها توسط ناوة غربی اقیانوس اطلس و ناوة غربی شرق مدیترانه و رودبادهای مستقر در منطقة واگرایی آن‏ها به عرض‏های برون‏حاره انتقال می‏یابند. ایران تحت نفوذ منطقة واگرایی ناوة غربی و هسته‏های سرعت رودبادهای جنب‏ حاره و جبهة ‏قطبی است که باعث شده‏اند ابرها ایران را پوشش دهند و به‏عنوان یک منبع رطوبتی حاره‏ای تحت تأثیر شرایط ناپایداری حاکم بر ایران به رخداد بارش منجر شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Tropical-extratropical interactions and extreme precipitation of Iran in Connection with Tropical Plums (Case study March 25 and 26, 2019)

نویسندگان [English]

  • Helaleh Fahimi 1
  • Abdollah Faraji 2
  • bohlol alijani 3
  • Hossein Asakereh 4
  • Koohzad Raispour 5
1 PhD student in Climatology, Zanjan University, Zanjan, Iran
2 Assistant Professor Department of Climatology, Zanjan University, Zanjan, Iran
3 Professor Department of Climatology, Kharazmi University, Tehran, Iran
4 Professor, Department of Climatology, Zanjan University, Zanjan, Iran
5 Assistant Professor, Department of Climatology, Zanjan University, Zanjan, Iran
چکیده [English]

Extended Abstract
Introduction
The interactions of circulation patterns are the interference or synergies of different circulation patterns from different latitudes and at different atmospheric levels. When interacting with circulation patterns, they will have different effects on the environmental phenomena of the Earth's surface than when acting individually. The mechanics of moving the telescopic link between the tropical zone and the subtropics is a major issue in geographical research. Considerable evidence suggests a dynamic relationship between tropical regions and mid latitudes. Tropical-extratropical interactions occur in a wide range of processes and at different scales.Tropical cloud plumes, reflects tropical- extratropical interaction in relation to the transfer of moisture from tropical to extratropical. TP was first defined by McGregor et al. (1984); a continuous strip of upper and middle clouds that are at least 2000 km long . clouds with minimum latitude of 20 degrees and maximum longitude of 5 degrees are in the tropical region. considers tropical cyclones as long bands of mid- and upper-level clouds moving from the tropical region to the polar-eastern direction to the subtropical region, especially continued by a tropical jet and a trough in its eastern part. TPs are relatively narrow at low latitudes (20–15 degrees) and widen at about 30 degrees north latitude. Studies of TP have expanded since the advent of satellite imagery in the 1960s. Prior to satellite imagery, McGurick et al. Described the development of TP in adaptation to a deep trough in subtropical jets and the turbulence of tropical winds, which ceases whenever this alignment is lost. The location and time of occurrence of plum clouds have been reported differently in different studies. In this study, we seek to investigate the Plum tropical clouds and the dynamic climbing factors that lead to their transfer to the midlatitude as a source of tropical moisture that leads to rainfall in Iran.
 
Methodology
In order to investigate the role of TP event as an important factor in tropical-extraterrestrial interactions and as a source of moisture in the days with inclement rainfall, the 25th, 26th days of 2019 that Iran has experienced extreme precipitation were selected. The data used in this study are satellite imagery and atmospheric data. Since TPs are clouds that can only be seen in satellite imagery, IR Meteosat satellite imagery was used. Required daily atmospheric data, geopotential height (in meters), wind speed (in meters per second) and wind direction were used on an hourly time scale. The origin, path and direction of the clouds were identified using satellite images. In order to identify synoptic patterns at the time of TP occurrence, synoptic maps of geopotential height and jet stream for atmospheric indices (200 and 300 hPa) were drawn in GRADS environment using ERA5 data. Also, combined images of clouds with geopotential height and tornadoes were used for better investigation.
 
Results and discussion
On March 25, at 0:00 a.m., the TP oceanic strip reaches 17 degrees along the North Atlantic cut-off low divergence zone, and along the orbital currents of westerly winds entering the tropics below the equatorial equator the subtropical jet stream is flowing. The bifurcation of TP corresponds to the bifurcation of polar front and subtropical jet streams. TPs correspond exactly to the kernels of jet stream. Jet stream core has not reached the east, southeast and parts of the northwest, so TP is not observed in these areas. The widening of the clouds occurred in the divergence zone of western trough over Iran and in the cut-off divergence zone of the Atlantic Ocean over western North Africa. At 06.00, with most of the jet stream core entering the northeastern and northern regions of Iran, TP has entered these areas. At 0:12, the wind speed of the core of jet stream has several degrees of southward displacement, which has led to the entry of TP into the southern and southwestern regions of Iran. At 0:18 East and TP continents originate from the Central African equator and enter Iran in the direction of the divergence zone of west trough and jet stream. Jet stream entered Iran in a more southerly direction, which prevented TP from entering northwestern Iran. On March 26, the subtropical jet stream is not orbital, unlike the day before. This factor can prevent the transmission of the TP orbit of the oceanic band to the east. The TP oceanic band reaches the Mediterranean with a south-north direction in the direction of the cut-off divergence of the Atlantic Ocean. Due to the location of jet stream core on the southwest-northeast diameter of Iran, the highest volume and extent of TP is observed in these areas of Iran. The entry point of TP corresponds to the entry point of jet stream core. At 18:00, the presence of the highest TP on the northeast of Iran indicates the presence of a speed core on these areas. On March 26, we see the southern transfer of TP in the direction of southwest-northeast diameter, which is in line with the southward displacement of the jet stream core to more southern widths.
 
Conclusion
On March 25 and 26 ,2019 The tropical intrusion of the extratropical dynamic factors has occurred. These factors are the deep extratropical western troughs and polar front jet streams. Their tropical intrusion has led to the transfer of tropical moisture to the extratropical region. The place of penetration of the western troughs into the tropics has determined the origin of the formation of clouds in the tropics. Also, the path and direction of the clouds from the tropics to the subtropics have been determined by the western trough divergence zone and the polar front jet stream at the level of 300 hPa and the subtropical jet stream at the level of 200 hPa. TP has entered Iran with both oceanic and continental origins and through the Red Sea and the Arabian Peninsula along the western trough divergence zone and speed core of the subtropical jet stream and polar fronts in a southwest-northeast direction. Two cloud bands merge on the Red Sea, Which lead to an increase in the Cloud moisture capacity on Saudi Arabia and Iran. With Transfers of clouds over Iran due to insufficient instability, clouds have led to precipitation. Tropical Plume clouds can be a source of moisture for offshore precipitation Tropical plume clouds can be a source of moisture for precipitation in extratropical. The presence of such a moisture source along with lower level moisture sources can increase the capacity of moisture, which in the presence of instability and lifting factors, cause more precipitation.

کلیدواژه‌ها [English]

  • Extra
  • Tropical interactions. Extreme rain . Tropical plume cloud. Tropical and etratropical region
  1. امیدوار، ک.؛ صفرپور، ف.؛ محمودآبادی، س. و الفتی، س. (1389). تحلیل همدیدی اثرهای سردچال در وقوع بارش‏های شدید در نواحی مرکز و جنوب غرب ایران، مدرس علوم انسانی- برنامه‏ریزی و آمایش فضا، 4(70): 161-189.
  2. برنا، ر. (1396). شناسایی الگوهای همدید بارش‏های سنگین در حوضة مارون (مطالعة موردی: بارش 29 آبان 1392)، جغرافیای طبیعی، 36: 47-59.
  3. داداشی رودبادی، ع. و کاشکی، ع. (1397). ارزیابی همدیدی بارش‏ سنگین 9 فروردین 1386 استان خراسان رضوی، آمایش فضای جغرافیایی، 29: 75-90.
  4. دوستکامیان، م.؛ جلالی، م. و طاهریان زاد، ا. (1397‏). واکاوی شار همگرایی رطوبت و آب قابل بارش جوّ بارش‏های بهارة ایران، جغرافیا و مخاطرات محیطی، 25 (7): 131-152.
  5. راستگو، ز. و رنجبر سعادت‏آبادی، ع. (1397). مطالعة بارش‏های شدید و حدی استان بوشهر از دیدگاه همدیدی- دینامیکی، هواشناسی و علوم جو، 1: 77-96.
  6. رستمی، ی. (1396). تأثیر ابر پلام بر روی بارش‏های ایران، پایانامة کارشناسی ارشد، استاد راهنما دکتر حسین عساکره، استاد مشاور دکتر سید حسین میرموسوی، دانشگاه زنجان.
  7. رئیس‏پور، ک. و عساکره، ح. (1400). بررسی نقش تعامل الگوهای توأم کم‏فشار بریده‏شده و رودباد جبهة قطبی در رخداد بارش سنگین فروردین‏ماه 1398 در استان لرستان، نشریة جغرافیا و مخاطرات محیطی.
  8. علیجانی، ب. (1376). آب و هوای ایران، انتشارات دانشگاه پیام نور.
  9. علیجانی، ب. (1393). اقلیم‏شناسی سینوپتیک، چ 8، تهران: انتشارات سمت.
  10. علیجانی، ب.؛ میرزایی، ن. و جاهدی، آ. (1398). واکاوی همدید بارش‏های حدی و سیل‏آسای کشور مطالعة موردی 16-21 مارس 1398، فصل‏نامة دگرگونی‏ها و مخاطرات آب و هوایی، 70: 2-114.
  11. فرج‏زاده، م. و کریمی، م. (1388). چگونگی انتقال رطوبت در بارش زمستانة غرب ایران (مطالعة موردی: بارش 3-7 ژانویة 1996)، درس علوم انسانی، 193: 1-217. 
  12. قاعدی، س.؛ موحدی، س. و مسعودیان، س. ا. (1391). رابطة فرود دریای سرخ با بارش‏های سنگین ایران، جغرافیا و پایداری محیط، 1: 1-18.
  13. قویدل‏ رحیمی، ی. و حاتمی، د. (1395). تحلیلی از اوضاع جوی بارش سنگین منجر به مخاطرة سیل 8 اسفند 1388 ایوان غرب، فضای جغرافیایی، 1: 55-16.
  14. کیانی، م.؛ لشکری، ح. و قائمی، ه. ‏(1399). تحلیل همدیدی رخداد فرین‏های بارش زمستان (DJF) در غرب ایران، پژوهش‏های دانش زمین، 3(43): 223-244.
  15. لشکری‏، ح. (1382). مکانیسم تکوین، تقویت، و مرکز کم‏فشار سودان و نقش آن بر روی بارش‏های جنوب و جنوب غرب ایران، مجلة پژوهش‏های جغرافیایی، 46: 1-
  16. لشکری، ح. (1381‏). مسیریابی سامانه‏های کم‏فشار سودانی ورودی به ایران، فصل‏نامة مدرس علوم انسانی، 22(25): 122-156.
  17. مسعودیان، س. ا. (1391). آب و هوای ایران، انتشارات شریعه توس.
  18. مصطفایی، ح.؛ علیجانی، ب. و سلیقه، م. (1394). تحلیل سینوپتیکی بارش‏های شدید و فراگیر در ایران، نشریة تحلیل فضایی مخاطرات محیطی، 4: 65-76.
  19. منتظری، م. (1388). تحلیل زمانی- مکانی بارش‏‏‏های فرین روزانة ایران، نشریة جغرافیا و برنامه‏ریزی محیطی، 2(24): 125-140.
  20. Alijani, B. (2014). Synoptic Climatoligy, Samt Publicationd.
  21. Alijani, B.; Mirzaee, NabiAllah and Jahedi, A. (2020). A Synoptic analysis comprehensive and heavy rainfall in Iran: case study16-31 st 2019. Climate change and hazards, 1( 2): 70-114.
  22. Alijani, B. (1997). Climate of Iran, Payame Noor Publications.
  23. Al-Khalidi, J.; Dima, M.; Vaideanu, P. and Stefan, S. (2017). North Atlantic and Indian Ocean links with Iraq Climate. Atmosphere, 8(12): 1-14.
  24. Almazroui, M.; Kamil, S.; Ammar, K.; Keay, K. and Alamoudi, A. O. (2016). Climatology of the 500-hPa Mediterranean storms associated with Saudi Arabia wet season precipitation. Climate Dynamics, 47(9): 2029-2042.
  25. Amit Tubi, Uri Dayan (2014). Tropical Plumes over the Middle East: Climatology and synoptic conditions, Atmospheric Research, 145: 168-181.
  26. Anderson, R. K. and Oliver, V. J. (1970). Some examples of the use of synchronous satellite pictures for studying changes in tropical cloudiness. In Symp. on Tropical Meteorology, pp. 1-6.
  27. Blackwell, K. G. (2000). Tropical plumes in a barotropic model: A product of Rossby wave generation in the tropical upper troposphere. Monthly weather review, 128(7): 2288-2302.
  28. Borna, R. (2017). Identification of Synoptic Patterns of Heavy Rainfall in Maroon Basin (Case Study: November 20, 2013). Physical Geography Quarterly, 36:47-60.
  29. Dadashi Roudbari, A. and Kashki, A. (2018). Synoptic evaluation heavy precipitation Khorasan Razavi Province March 29, 2007. Geographical Planning of Space, 8(29): 75-90.
  30. Dayan,‏; Ziv,‏ B.;‏ Margalit, A.; Morin, E. and Sharon, D. (2001). A severe autumn storm over the middle-east: synoptic and mesoscale convection analysis. Theoretical and Applied Climatology, 69(1): 102-122.
  31. De Vries, A. J.; Tyrlis, E.; Edry, D.; Krichak, S. O.; Steil, B. and Lelieveld, J. (2012). Extreme precipitation events in the Middle East: dynamics of the Active Red Sea Trough. Journal of Geophysical Research: Atmospheres, 118(12): 7087-7108.
  32. De Vries, A.‏J‏. et al. )2016(. Dynamics of tropical–extratropical interactions and extreme precipitation events in Saudi Arabia in autumn, winter and spring. Royal Meteorological Society, 142(697): 1862-1880.
  33. De, Felece. (1976). Aerojet subtropical d'hiver ET nuages associes .la Meteorologie.Vie Seri, 6: 224-225.
  34. Doostkamian, M.; Jalali, M. and Taherian Zad, A. M. (2018). Analysis of atmospheric precipitation water and moisture flux convergence spring rains Iran. Journal of Geography and Environmental Hazards, 7(1): 121-152.
  35. Evan, J.; Smith, R. and Oglesby, R. (2002). Precipitation processes in the Middle East. In Proceedings International Congress on Modeling and Simulation, MODISM02, University of Western Australia, University Print.
  36. Farajzadeh, M.; Karimi Ahmadabad, M.; Ghaemi, H. and Mobasheri, M. R. (2007). Studying the moisture flux over west of Iran: A case study of January 1 to 7, 1996 rain storm. Journal of applied sciences, 7(20): 2022-2020.
  37. Fröhlich, L.; Knippertz, P.; Fink, A. H. and Hohberger, E. (2013). An objective climatology of tropical plumes, Journal of climate, 26(14): 5044-5060.
  38. Ghaedi, S.; Movahedi, S. and Masoodian, A. (2012). The Relation between the Red Sea Trough and Heavy Precipitation in Iran. Geography and Environmental Sustainability, 2(1): 1-18.
  39. Ghavidele Rahimi, Y. and Hatami, D.(2016). Analysis of heavy rainfall led to flood risk on 27 February 2010 in eyvangharb city (in west of iran). Geographical Space, 16(55): 1-16.
  40. Grams, C. M. and Jones, S. C. (2011). Modelling the extratropical transition of tropical cyclones and its downstream impact. In High Performance Computing in Science and Engineering, 10: 479-499.
  41. Heydarizad, M.; Raeisi, E.; Sori, R. and Gimeno, L. (2018). The identification of Iran’s moisture sources using a Lagrangian particle dispersion model. Atmosphere, 9(10): 1-15.
  42. Iskenderian, H. (1995). A 10-year climatology of Northern Hemisphere tropical cloud plumes and their composite flow patterns. Journal of climate, 8(6):1620-1627
  43. Jones, S. C.; Harr, P. A.; Abraham, J.; Bosart, L. F.; Bowyer, P. J.; Evans, J. L.; ... and Thorncroft, C. (2003). The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Weather and Forecasting, 18(6): 1052-1092.
  44. Keller, J. H.; Grams, C. M.; Riemer, M.; Archambault, H. M.; Bosart, L.; Doyle, J. D.; ... and Zhang, F. (2019). The extratropical transition of tropical cyclones. Part II: Interaction with the midlatitude flow, downstream impacts, and implications for predictability. Monthly Weather Review, 147(4): 1077-1106.
  45. Kiani, M.; Lashkari, H. and Ghaemi, H. (2020). Synoptic analysis of winter (DJF) extreme rainfall in western Iran. Researches in Earth Sciences, 11(3): 223-244.
  46. Knippertz, P. (2005). Tropical–extratropical interactions associated with an Atlantic tropical plume and subtropical jet streak. Monthly weather review, 122(9): 2759-2776.‏
  47. Knippertz, P.(2007). Tropical–extratropical interactions related to upper-level troughs at low latitudes, Dynamics of Atmospheres and Oceans, 10.1016/j.dynatmoce.2006.06.002, 42, 1-2, 26-62.
  48. Knippertz, P.; Fink, A. H.; Reiner, A. and Speth, P. (2002). Three late summer/early autumn cases of tropical–extratropical interactions causing precipitation in northwest Africa. Monthly Weather Review, 121(1): 116-125.
  49. Knippertz, P. and Martin, J. E. (2005). Tropical plumes and extreme precipitation in subtropical and tropical West Africa. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 121(610): 2227-2265.
  50. Knippertz, P. and Martin, J. (2009). Tropical Plumes and Extreme Precipitation in Subtropical and Tropical West Africa: Part I. Moisture Transport and Precipitation Generation. J. R. Meteorol. Soc. (2005), 131, 1-31.
  51. Kuhnel, I. (1989). Tropical‐extratropical cloudband climatology based on satellite data. International Journal of Climatology, 9(5), 441-462.
  52. Kuhnel, ‏ ‏(1991). Tropical-Extratropical Cloudbands over the Sahara (Tropische-extratropische Wolkenbänder über der Sahara), Erdkunde,277-290.
  53. Kumar, K. N.; Phanikumar, D. V.; Sharma, S.; Basha, G.; Naja, M.; Ouarda, T. B. and Ratnam, M. V. (2019). Influence of tropical-extratropical interactions on the dynamics of extreme rainfall event: A case study from Indian region. Dynamics of Atmospheres and Oceans, 85: 28-40.
  54. Lashkari, H.(2004). Mechanism of formation, strengthening and low pressure center of Sudan and its role on rainfall in southern and southwestern Iran. Geography Research, 46:1-18.
  55. Lashkari, H.( 2003.Routing of Sudanese low pressure systems entering Iran. Modares Human Sciences, 22(25): 122-156.
  56. Lau,­K.­M.;Chan,­P.­H.­(1988). Intraseasonal and interannual variations of tropical convection: A possible link between the 40–50 day oscillation and ENSO?. Journal of the Atmospheric Sciences, 45(3),­506-521.
  57. Masoodian, A.(2011). Climate of Iran. Sharia Toos Publications.
  58. McGuirk, J. P.;Thompson, A. H. and Schaefer, J. R. (1988). An eastern Pacific tropical plume. Monthly weather review, 116(12): 2505-2521.
  59. McGuirk, J. P.; Thompson, A. H. and Smith, N. R. (1987). Moisture bursts over the tropical Pacific Ocean. Monthly weather review, 115(4): 787-798.
  60. Mirmousavi, H.; Darand, M.and Ahmadpour, S. (2020). Identifying the moisture source of precipitation in the southern coasts of the Caspian Sea. Theoretical & Applied Climatology, 140:1409-1417.
  61. Montazeri, M. (2009). Geography and Environmental Planning Temporal-spatial analysis of daily Extreame precipitation in Iran. Geography and Environmental, 2(24): 125-140.
  62. Moon, J. Y. and Ha, K. J. (2003). Association between tropical convection and boreal wintertime extratropical circulation in 1982/82 and 1988/89. Advances in Atmospheric Sciences, 20(4):592-602.
  63. Omidvar, K.; Safarpour, F.; Mahmodabadi, M. and Olfati, S. (2011). A synoptic analysis of cut-off low effects in the event of severe precipitations of central and southwestern regions of Iran. Spatial Planning(Modares Human Sciences), 14(4(68)): 161-189.
  64. Raispour, K. and Asakereh, H. (1400). Investigating the role of the interaction of low pressure combined patterns and polar winds in the occurrence of heavy rainfall in April 2017 in Lorestan province. geography and environmental hazards. Geography and environmental hazards.
  65. Rastgoo, Z. and Ranjbar Saadatabadi, A. (2018). Study of heavy and extreme rain in Bushehr province in term of synoptic- dynamic. Journal of Meteorology and Atmospheric Science, 1(1): 77-96.
  66. Rostami, Y. (2016). The effect of Tropical plum on rainfall in Iran. Master Thesis, Supervisor: Dr. Hossein Askareh, Advisor: Dr. Seyed Hossein Mirmousavi, Zanjan University, 49.
  67. Rubin, S.; Ziv, B. and Paldor, N. (2007). Tropical plumes over eastern North Africa as a source of rain in the Middle East. Monthly Weather Review, 125(12): 4125-4148.
  68. Sandhya, M.; Sridharan, S. and Devi, M. I. (2016). Tropical plumes due to potential vorticity intrusions over Indian sector. Atmospheric Research, 172: 28-36.
  69. Tubi, A. and Dayan, U. (2014). Tropical Plumes over the Middle East: Climatology and synoptic conditions. Atmospheric Research, 145: 168-181.
  70. Tubi, A.; Dayan, U. and Lensky, I. M. (2017). Moisture transport by tropical plumes over the Middle East: A 20‐year climatology. Quarterly Journal of the Royal Meteorological Society, 142(709): 2165-2176.
  71. Yang, S.; Deng, K.; Ting, M. and Hu, C. (2015). Advances in research on atmospheric energy propagation and the interactions between different latitudes. Journal of Meteorological Research, 29(6): 859-883.
  72. Ziv, B. (2001). A subtropical rainstorm associated with a tropical plume overAfrica and the Middle-East. Theoretical and Applied Climatology, 69(1): 91-102.
  73. Zohdy, H. M. (1989). Lateral coupling between extratropical and tropical disturbances over Africa associated with Mediterranean. WMO PSMP Report Series, 21: 29.
  74. Zwatz-Meise, V. and Hailzl, G. (1980). Interpretation of so-called shear bands in satellite images. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 28(2): 299-215.
دوره 54، شماره 1
این شماره با همکاری و مشارکت «انجمن ایرانی ژئومورفولوژی» منتشر شده است، بدینوسیله از مشارکت این انجمن در «داوری مقالات» ، «معرفی داوران» و «دبیران تخصصی » و «شرکت در جلسات و نشست های مرتبط» تشکر می گردد.
اردیبهشت 1401
صفحه 37-84
  • تاریخ دریافت: 06 آبان 1400
  • تاریخ بازنگری: 02 بهمن 1400
  • تاریخ پذیرش: 06 اردیبهشت 1401