مدل‌سازی فرسایش کرانه‌ای رودخانه جاجرود حدفاصل سد لتیان تا ماملو

نوع مقاله : مقاله کامل

نویسندگان

گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

10.22059/jphgr.2023.358931.1007770

چکیده

رودخانه‌ها در مسیر خود همواره با پدیده‌ای به نام فرسایش دست‌به‌گریبان هستند که از یک‌سو تغییرات بسیاری را در شکل هندسی مقطع رودخانه، ریخت‌شناسی و مشخصات هیدرولیک جریان آن ایفا می‌کند و از سوی دیگر، اثرات جبران‌ناپذیری را برای اراضی مجاور کانال وارد می‌کند. از عمده‌ترین منابع تولید رسوبات، فرسایش سواحل رودخانه است. در همین راستا بررسی میزان فرسایش سواحل یکی از راهبردهای مدیریتی است. منطقه موردمطالعه سواحل رودخانه جاجرود حدفاصل سد لتیان تا سد ماملو به تعداد هفت مقطع است. در این مطالعه، برای فرسایش کرانه رودخانه و برآورد میزان رسوب از روش یا مدل برآورد رسوب کرانه و پای کرانه (BSTEM) که در این مدل از پارامترهای هندسی کانال (زاویه دیوار و ارتفاع کرانه و فاصله پنجه کرانه و زاویه آن)، ارتفاع لایه‌ها و جنس آن‌ها، اطلاعات جریان و پوشش گیاهی و سایر مواد پوشاننده کناره استخراج و استفاده‌شده است. در این پژوهش از عمق جریان در حالت دبی لبالبی و طول مدت جریان 12 ساعته برای مدل‌سازی فرسایش کرانه استفاده گردید. مدل با محاسبه تنش برشی و میزان مقاومت خاک به مدل‌سازی میزان تخریب کرانه می‌پردازد. نتایج پژوهش نشان داد که تمام مقاطع به‌جز مقطع 6، دارای فرسایش زیاد است. تفاوت مقادیر فرسایش نیز در مقاطع مختلف بیشتر به دلیل نوع رسوبات کرانه و زاویه شیب کرانه بوده است. ازنظر پایداری کرانه و ضریب ایمنی (FS) نیز ناپایدارترین کرانه در مقطع 5 و پایدارترین کرانه در مقطع 6 رودخانه بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Erosion modeling of Jajrud river banks Between Letyan and Mamlu dams Jajrud, Tehran

نویسندگان [English]

  • Ali Golestani
  • mohammad mehdi Hosseinzadeh
Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
چکیده [English]

ABSTRACT
Rivers in their path are always struggling with a phenomenon called erosion, which on the one hand causes many changes in the geometric shape of the river section, morphology and hydraulic characteristics of its flow, and on the other hand, it brings irreparable effects to the lands adjacent to the channel. One of the main sources of sediment production is the erosion of river banks. In this regard, investigating the amount of coastal erosion is one of the management strategies. The area under study is the banks of the Jajroud River, between Letian Dam and Mamlo Dam, with a total of seven sections. In this study, for the erosion of the river bank and estimation of the amount of sediment from the method or model of estimation of the bank and foot of the bank (BSTEM) in this model, the geometrical parameters of the channel (angle of the wall and height of the bank and the distance of the toe of the bank and its angle), the height of the layers And their species, flow information and vegetation cover and other side cover materials have been extracted and used. In this research, the depth of the flow in a spiral discharge mode and the flow duration of 12 hours were used to model the bank erosion. The model models the amount of bank destruction by calculating the shear stress and soil resistance. The results of the research showed that all sections except section 6 have high erosion. The difference in erosion values in different stages was mostly due to the type of bank sediments and bank slope angle. In terms of bank stability and safety factor (FS), the most unstable bank was in section 5 and the most stable bank was in section 6 of the river
 
Extended Abstract
Introduction
Rivers always struggle with a phenomenon called erosion on the one hand, it makes many changes in the geometric shape of the river section, morphology, and hydraulic characteristics of its flow, and on the other hand, it brings irreparable effects to the lands adjacent to the channel. There are different types of erosion phenomena, one of the most important and common erosion mechanisms in rivers is the mass erosion of river banks. extensive research has been done in the field of mass erosion and factors affecting it that lead to soil erosion and loss of land adjacent to the river one of the main sources of sediment production is the erosion of river banks. There are various methods and models to estimate the amount of river bank erosion, and the Bank Stability and Toe Erosion Model (BSTEM) is one of the numerical simulation models. This model has been developed to predicting lateral retreat streambanks (caused by river erosion and geotechnical rupture). This model estimates the erosion rate by taking into account the soil resistance forces and driving forces along the surface prone to failure (rupture).
 
Methodology
This study was carried out between the Letyan and Mamlu dams in the Jajrud River in the east of Tehran city. The effects of erosion are evident along the entire length of the channel despite the dam and its controlling role. The maximum discharge of Letyan dam was 206 cubic meters per second in the water year 1994-95, and its average discharge was recorded as 1.67 cubic meters per second in the statistical period from 1988 to 2018. In this research, the cross-sections under study were selected, based on aerial photos and satellite images and then based on field visits, the selected sections (seven sections) were examined to study bank erosion by BSTEM model.
The BSTEM model is one of the most widely used and advanced models regarding the stability of the river bank. This model was developed by the National Sediment Laboratory in Oxford-Mississippi in the United States. This model estimates the erosion rate by considering the soil resistance forces and driving forces along the failure-prone surface. The required parameters of the model include the following 1- Geometric parameters of the channel 2- The thickness of the layers and their materials 3- flow data (flow rate) 4- Vegetation and other side covering materials. After entering the mentioned data into the model, can be seen bank erosion modeling (bank geometry, angle, and height of failure surface occurrence) and bank toe erosion modeling, for specific flow periods. The bank safety factor (FS) is calculated at the end of the modeling. In this section, you can see the results of the model, including the calculated shear stress, the amount of bank retreat, the amount of sediments transported from the bank and the bank toe, the new profile of the bank, and the amount of erosion.
 
Results and Discussion
In this research, the bank erosion has been simulated in the BSTEM model to investigate the amount of bank retreat and the amount of sediment produced in 7 cross-sections of the Jajrud River. This research was used the scenario of flow depth in the case of bankfull and 12-hour flow duration to simulate the bank and the bank toe. Based on the simulation results, the amount of hydraulic erosion and the change in the geometry of the bank toe should be determined. The amount of erosion for the cross-sections was as follows. cross-section 1 is 21m^3, back length is 0.57 m and safety factor is 0.38, cross-section 2 is 4 m^3, back length is 0.63 m and safety factor is 0.05, cross-section 3 is m^3, back length is 0.57 m and Safety factor 0.69, cross-section 4 6 m^3, rear length 0.66 m and safety factor 0.66, cross-section 5 is 21 m^3, rear length 1.28 m and safety factor 1.3, cross-section 6 is m^3, Back length - m and safety factor 3.34, cross-section 7 is 9 m^3, back length 0.65 m and safety factor 0.82. This model was carried to know the bank erosion and the amount of sediment production due to bank failure and erosion of the channel bank in seven cross-sections of the channel and the results of all sections except cross-section 6 show high erosion. In cross-section 6, the top of the wall was in a low-risk state, and the foot of the wall brought an acceptable amount of sediment into the channel. The bank angle is most important and effective parameter.
 
Conclusion
In all cross-sections, there is a large amount of retreat, the highest of which was related to cross-section 5 with an amount of 1.28 meters, and the lowest was related to cross-section 6 (almost zero). Other cross-sections are in the range of 57 cm to 66 cm.
In terms of bank stability and safety factor (FS), the most unsafe cross-section is number 5 to the amount of 0.05 and the safest section is number 6 to the amount of 3.34. Of course, the safety number of 1.3 for cross-section 5 with the condition of vegetation is also high safety. The highest weight of the fallen mass is for cross-sections 5, 1, and 7, respectively and after these sections, there is cross-section number 4 and cross-section number 2. Field observations after one year showed that results of cross-sections No. 2, 3, and 4 are very close to reality and the walls have collapsed, which shows the high compatibility of this model with the natural conditions of the region.
 
Funding
There is no funding support.
 
Authors’ Contribution
All of the authors approved the content of the manuscript and agreed on all aspects of the work.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Jajrud River
  • Letyan Dam
  • Bank stability
  • Bank Erosion
  • BSTEM
  1. اسماعیلی، رضا؛ حسین زاده، محمدمهدی و متولی، صدرالدین. (1390). تکنیک‌های میدانی در ژئومورفولوژی رودخانه‌ای. تهران: انتشارات لاهوت.
  2. حسین زاده، محمدمهدی و اسماعیلی، رضا. (1394). ژئومورفولوژی رودخانه‌ای، مفاهیم، فرم‌ها و فرایندها. چاپ اول، تهران، تهران: انتشارات دانشگاه شهید بهشتی.
  3. حسین زاده، محمدمهدی و گلستانی، علی. (1401). بررسی تغییرات الگوی شریانی رودخانه جاجرود بر اساس شاخص‌های شریانی بریس، ریچاردز و واربوردن (حدفاصل سد لتیان تا سد ماملو). پژوهش‌های ژئومورفولوژی کمّی، 12 (1)، 151-132.  doi: 10.22034/gmpj.2023.367566.1385
  4. حسین زاده، محمدمهدی و اسماعیلی، رضا. (1397). برآورد فرسایش کناره‌ای رودخانه با استفاده از مدل BSTEM. فصلنامه زمین‌شناسی ایران، 45، 53-70.  doi: 10.52547/esrj.11.4.1
  5. حسین زاده، محمدمهدی؛ خالقی، سمیه و رستمی، میلاد. (1398). شبیه‌سازی فرسایش کرانه‌ای رودخانه و مخاطرات آن با استفاده از مدل BSTEM (مطالعه موردی: رودخانه گلالی قروه). نشریه جغرافیا و برنامه‌ریزی، 67: 129-149.
  6. حسین زاده، محمدمهدی؛ صدوق، سید حسن؛ متش بیرانوند، سعید و اسماعیلی، رضا. (1398). برآورد میزان فرسایش کناره‌ای رودخانه با استفاده از مدل پایداری کناره و فرسایش پای کرانه (مطالعه موردی: رودخانه لاویج-شهرستان نور). مجله آمایش جغرافیایی فضا، 33، 265-278. doi 10.30488/GPS.2019.56759.2120
  7. روشن نسب، فاطمه؛ میرزایی قره لر، محمدرضا و خزایی، مجید. (۱۴۰۱). بررسی اثرات مقاومت برشی درختی بر پایداری رودخانه (بازه‌ای از رودخانه بشار استان کهگیلویه و بویراحمد شهر یاسوج). پژوهش‌های فرسایش محیطی،12(۱)، ۱۸۲-۱۶0. http://dorl.net/dor/20.1001.1.22517812.1401.12.1.1.6
  8. صمدی، امیر و امیری تکلدانی، ابراهیم. (1394). فرسایش تودهای سواحل رودخانه‌ها فرایندها و سازوکارها. تهران: انتشارات دانشگاه تهران.
  9. گلستانی، علی و حسین زاده، محمدمهدی. (1401). نقش توپوگرافی بر الگو و مورفولوژی رودخانه جاجرود. نهمین همایش ملی انجمن ایرانی ژئومورفولوژی، تهران.
  10. گلستانی، علی و انصاری، رامین. (1397). بررسی مؤلفه هندسی پیچان‌رودها و میزان توسعه آن‌ها در استان بوشهر. یازدهمین سمینار بین‌المللی مهندسی رودخانه، اهواز.

نقشه‌های 1:100000 سازمان زمین‌شناسی و اکتشافات معدنی کشور شامل نقشه‌های شرق تهران، دماوند و تهران.

  1. 1:100,000 maps of the Geological and Mineral Exploration Organization of the country, including the maps of East Tehran, Damavand and Tehran
  2. Al-Madhhachi, A.T., Al-Mussawy, H.A., Basheer, M., & Abdul-Sahib, A.A., (2020). Quantifying Tigris Riverbanks Stability of Southeast Baghdad City using BSTEM. International Journal of Hydrology Science and Technology, 10 (3), 230-247. https://doi.org/10.1504/IJHST.2020.107212
  3. De Souza Dias, V., de Faria, K. M. S., da Luz, M. P., & Formiga, K. T. M. (2022). Investigation and Quantification of Erosions in the Margins of Water Bodies: A Systematic Review. Water, 14(11), 1693. https://doi.org/10.3390/w14111693
  4. Esmaili, R., Hosseinzadeh, M. M., & Motevalli, S., (2011) Field Techniques in Fluvial Geomorphology. Tehran: Publishers lahut. [In Persian]
  5. Ghosh, A., Roy, M.B., & Roy, P.K. (2022) Evaluating lateral riverbank erosion with sediment yield through integrated model in lower Gangetic floodplain, India. Acta Geophys, 70, 1769–1795. https://doi.org/10.1007/s11600-022-00822-7
  6. Golestani, A., & Ansari. R., (2018) Investigating the geometric component of twisting rivers and their development rate in Bushehr province. The 11th International Seminar on River Engineering. [In Persian]
  7. Golestani, A., & Hosseinzadeh, M. M., (2023) Investigating changes in the braided pattern of the Jajroud River based on Brice, Richards and Warburton braiding indices (between Latian Dam and Mamlo Dam). Quantitative geomorphology research, 12(1), 132-151. doi: 10.22034/gmpj.2023.367566.1385 [In Persian]
  8. Golestani, A., & Hosseinzadeh, M. M., (2023) The role of topography on the pattern and morphology of Jajrud river. The 9th Conference of the Iranian Association of Geomorphology, 67013-01220. [In Persian]
  9. Hanson, G. J., & Simon. A., (2001), Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrological Processes, 15 (1), 23-38. https://doi.org/10.1002/hyp.149
  10. Hosseinzadeh, M. M., & Esmaili, R., (2015). Fluvial Geomorphology Concepts. Tehran: Forms and Processes Publishers Shahid Beheshti University. [In Persian]
  11. Hosseinzadeh, M. M., & Esmaili, R., (2018) Estimation of river bank erosion using BSTEM model. Iranian journal of geology. [In Persian]
  12. Hosseinzadeh, M. M., & Sadogh, S. H., Beyranvand, M. S., & Esmaili, R., (2018) Predict the rate of bank erosion in Lavij river during a particular flow by using BSTEM. Journal of Geographical Survey of Space, 9(33), 265-278. doi:10.30488/gps.2019.56759.2120 [In Persian]
  13. Hosseinzadeh, M. M., Khaleghi, S., & Rostami, M., (2019). Simulation of river bank erosion and its hazards by BSTEM model (Case study: Galali river, Ghorveh). Journal of geography and planning, 23(67), 129-149. [In Persian]
  14. Klavon, K., Fox, G., Guertault, L., Langendoen, E., Enlow, H., Miller, R., & Khanal, A., (2017) Evaluating a process-based model for use in streambank stabilization: insights on the Bank Stability and Toe Erosion Model (BSTEM), Earth Surface Processes and Landforms, 42 (1), 119-213, https://doi.org/10.1002/esp.4073
  15. Klavon, K., Fox, G., Guertault, L., Langendoen, E., Enlow, H., Miller, R., & Khanal, A., (2017). Evaluating a process‐based model for use in streambank stabilization: insights on the Bank Stability and Toe Erosion Model (BSTEM). Earth Surface Processes and Landforms, 42 (1), 191-213. https://doi.org/10.1002/esp.4073
  16. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A., (2000) Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems, Archives of Environmental Contamination and Toxicology, 39 (1), 20-31. https://doi.org/10.1007/s002440010075
  17. Narasimahan B., Allen P. M., Conffman S. V., Arnold J. G., & Srinivasan R. (2017) Development and Testing of a Physically Based Model of Streambank Erosion for Coupling with a Basin-Scale Hydrologic Model SWAT. Journal of The American Water Resources Association, 53, 344–364, https://doi.org/10.1111/1752-1688.12505
  18. Nieto, N., Chamorro, A., Echaveguren, T., & Escauriaza, C. (2023). Fragility curves for road embankments exposed to adjacent debris flow. Progress in Physical Geography: Earth and Environment, 47 (1), 105–122. https://doi.org/10.1177/030913332211114
  19. Okeke, C. A. U., Uno, J., Academe, S., Emenike, P. C., Abam, T. K. S., & Omole, D. O. (2022). An integrated assessment of land use impact, riparian vegetation and lithologic variation on streambank stability in a peri-urban watershed (Nigeria). Scientific reports, 12 (1), 10989. https://doi.org/10.1038/s41598-022-15008-w
  20. Roushannasab, F., Mirzaei, M., & Khazaei, M., (2022) Effects of Tree Shear Strength on River Stability (Reach of BESHAR River). Journal of Environmental Erosion Research, 12 (1), 160-182. [In Persian]
  21. Samadi, A., & Amiri Tokaldany, E., (2015). Massive Erosion in Riverbanks Processes and Mechanisms. Tehran: Publishers University of Tehran. [In Persian]
  22. Simon, A., Bankhead, N., & Thomas, R. E., (2010). Iterative bank stability and toe-erosion modeling for predicting stream bank loading rates and potential load reductions, paper presented at Joint Federal Interagency Conference, Subcomm. On Hydrol. And Sediment., Advis. Comm. on Water Info. Las Vegas, Nev., 27 June to 1 July. 38870550 - 0-11
  23. Simon, A.; Curini, A.; Darby, S. E., Langendoen, E. J., (2000), Bank and near-bank processes in an incised channel, Geomorphology, 35, 193-217 https://doi.org/10.1016/S0169-555X(00)00036-2
  24. Thapa, I., & Tamrakar, N. K. (2016). Bank stability and toe erosion model of the Kodku Khola bank, southeast Kathmandu valley, central Nepal. Journal of Nepal Geological Society, 50 (1), 105–111.
  25. Wang, H., Hu, Q., Liu, W., Ma, L., Lv, Z., Qin, H., & Guo, J. (2023). Experimental and Numerical Calculation Study on the Slope Stability of the Yellow River Floodplain from Wantan Town to Liuyuankou. Toxics, 11 (1), 1-79. https://doi.org/10.3390/toxics11010079
  26. Waterman, D. M., Liermann, M., Pollock, M.M., Baker, S. & Davies, J., (2006), Steady-state parallel retreat migration in river bends with noncohesive (composite) banks. Water Resources Research, 58 (3), 1-33. https://doi.org/10.1029/2021WR030762
  27. Wei, Q., (2022). Quantifying the Effects of Water Management Decisions on Streambank Stability. UWSpace. Master of Science in Earth Science (Water), 1-95. http://hdl.handle.net/10012/18856
  28. Wenqian. L. u., (2022). Characterization and stability for Cottonwood riverbank-a reliability study for BSTEM. Kansas State University. Master of Science in Department of Civil Engineering. 1-74. https://hdl.handle.net/2097/42195
  29. Zegeyea, A. D., Langendoen, E. J., Steenhuis, T. S., Mekuria, W., Tilahun, S. A., (2020) Bank stability and toe erosion model as a decision tool for gully bank stabilization in sub humid Ethiopian highlands. Ecohydrology & Hydrobiology, 20 (2), 301-311. https://doi.org/10.1016/j.ecohyd.2020.02.003