پهنه‌بندی زمانی و مکانی خطر سیل‌خیزی در حوضه آبریز کَرگانرود با استفاده از مدل‌ AWBM و روش Fuzzy-ANP

نوع مقاله : مقاله کامل

نویسندگان

گروه ژئومورفولوژی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

10.22059/jphgr.2023.361608.1007778

چکیده

ارزیابی پتانسیل سیل‌خیزی حوضه‌های آبریز مختلف از اقدامات مهم در زمینه کاهش خسارت‌های ناشی از سیل بشمار می‌رود. حوضه آبریز کرگان رود به‌عنوان یکی از حوضه‌های سیل‌خیز استان گیلان، در سال‌های اخیر همواره خسارت‌های فراوانی را به ساکنین منطقه تحمیل کرده است. از همین رو تحقیق جاری به دلیل خلاء مطالعاتی در این حوضه، اقدام به پهنه‌بندی خطر وقوع سیل نموده و به همین منظور از مدل AWBM و روش Fuzzy-ANP استفاده‌شده است که مقادیر به‌دست‌آمده از مدل‌سازی AWBM، روند رواناب را از لحاظ زمانی در سال‌های 2011، 2014، 2017 و اواخر 2018 صعودی برآورد نموده و با سیل‌های سال 90، 93، 96 و 97 برابری می‌کند. در پهنه‌بندی مکانی خطر وقوع سیل از 10 فاکتور موثر شامل: بارش، دما، فاصله از رودخانه، شیب، جهت شیب، ارتفاع، کاربری اراضی، پوشش گیاهی، زمین‌شناسی و خاک استفاده شد. در تحلیل نتایج بیش‌ترین خطر سیل‌خیزی در نواحی جنوبی و خروجی حوضه به دریای خزر برآورد شده که سکونت در حریم رودخانه، عدم توجه به آبخیزداری، تخریب جنگل و مراتع و تغییر کاربری اراضی از جمله مهم‌ترین عوامل موثر در این مسئله به­شمار می‌آیند. در مجموع 90/3 درصد از مساحت حوضه دارای بیش‌ترین خطر وقوع سیل از نظر مکانی محاسبه‌شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Temporal and spatial zoning of flood risk in Karganrood catchment using AWBM model and Fuzzy-ANP method

نویسندگان [English]

  • Seyyed Asadullah Hejazi
  • kosar Loghmannia
Department of Geomorphology, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran
چکیده [English]

ABSTRACT
Evaluating the flood potential of different watersheds is one of the important measures in the field of reducing damages caused by floods. As one of the flood-prone basins of Gilan province, the River catchment has always caused a lot of damage to the residents of the region in recent years. Therefore, due to the lack of studies in this basin, the current research has attempted to zonate the risk of flooding, and for this purpose, the AWBM model and the Fuzzy-ANP method have been used. , 2014, 2017 and the end of 2018 are estimated to increase and equal to the floods of 1990, 1993, 199, and 1997. In the spatial zoning of flood risk, 10 effective factors incluincludingecipitation, temperature, distance from the river, slope, slope direction, height, land use, vegetation, geolo   and soil were used. In the analysis of the results, it is estimated that the highest risk of flooding is in the southern areas and the outlet of the basin to the Caspian Sea, and the settlement in the river, lack of attention to watershed management, destruction of forests and pastures, and land use change are among the most important factors affecting this issue. In total, 90.3% of the area of the basin has the highest risk of flooding from a geographical point of view
Extended Abstract
Introduction
Each of the effective factors in causing floods has a different contribution to the risk of its occurrence at the level of catchment basins so that each can be prioritized according to its importance in the region. Reclamation of watersheds for flood control in one project is impractical due to its large size, expansion of impervious areas, and economic and operational issues that can increase flooding. The temporal or spatial zoning of flood risk in this area has not been done with any of the selected models, and the relevant authorities rarely take measures to reduce flood damage. More research is needed in this field to study the basin properly. This study was conducted with the aim of flood risk zoning using two AWBM and Fuzzy-ANP models.
 
Methodology
Monthly evapotranspiration, river flow, and precipitation data from 2006 to 2018 were used to simulate the runoff volume of Kerganrood Talesh River using the AWBM model for time zoning. The research used data from synoptic and hydrometric stations in Hashtpar, Lisar, Mashinkhaneh, Sheikh Darun Shandol, Kishli, Khan Balaghi, Piseson, and Davor Ardabil, prepared by the synoptic and Hydrometrical stations of Gilan and Ardabil Provinces. The required data is first arranged in Excel, in the format of RRL software, then it is defined for the model, and based on 9 parameters determined by the software itself, the simulation has been done to estimate the runoff and flood of this basin. This method evaluates the model's accuracy in simulating the observational data using the Nash-Sutcliffe coefficient index (EN2) as the objective function and the explanation coefficient (R2). Additionally, the sensitivity level of the parameters used in the model is investigated in the studied area.
In order to conduct spatial zoning, Cochran's formula was used to calculate the statistical sample size. Then, 30 questionnaires were distributed among experts in the field based on the research objective. The purpose, criteria, and sub-criteria of the Super Decision software were determined, and 10 indicators were selected, which are factors such as geology, slope, land use, digital elevation model (DEM), precipitation, temperature, vegetation, soil, and distance from the river impact flood occurrences. This article will discuss the effect of each factor and how to map them.
 
Results and Discussion
According to the values estimated by the model and the graphs drawn in Excel, it can be concluded that the AWBM model has a relative ability to estimate the runoff trend in the Kerganrood watershed. The model attempts to replicate the highest river discharge points during the designated time series. Although it follows a uniform mode in simulation, it can compute the runoff flow process similar to reality. Therefore, the use of this model has been evaluated with average accuracy in monthly simulation and has obtained the required efficiency satisfactorily. In this model, the runoff graph shows an increasing trend over time in 2011, 2014, 2017 and 2018, which indicates the risk of flooding in the study area based on the floods recorded by the Water and Regional Organization of Gilan Province. This increasing trend and the peak of the river flow correspond to the floods of September and October 2011, 2014, 2017 and October 5, 2018, which caused significant damage to the area's residents.
In the spatial zoning of flood risk, the average data of Talesh synoptic station and 9 hydrometric stations recorded by the hydrometeorological and hydrological organization of Gilan province and Ardabil province were used to draw the map of the distribution of precipitation and temperature in the Kerganrood watershed. In the next step, the slope, slope direction, and topographic map were drawn using the digital elevation model (DEM) in the GIS software environment with a spatial resolution of 12.5 meters. Then, the waterways of the Karganrood basin have been classified after estimation by calculating the Euclidean distance from the river. In drawing the geological map, the 1:100,000 geological map of Talesh city was used, and for drawing the soil map, the soil map of the whole of Iran was used. Finally, to draw land use and vegetation maps, Landsat satellite images have been used as inputs for spatial zoning of flood risk.
First, experts' opinions are used to weight indicators through network analysis in Super Decisions software. Then, layers are classified using GIS software, and a flood risk zoning map is created through the Weighted Overlay and Raster Calculate tools. In the end, an output map was extracted as a spatial flood zoning map of the Kerganrood Talesh basin with very low, low, medium, high, and very high-risk points, and the area of each floor was calculated.
 
Conclusion
The spatial zoning of flood risk in the Karganrood Talesh watershed was done using AWBM and Fuzzy-ANP models. The Nash-Sutcliffe coefficient was 0.553 and 0.507 in the calibration and validation stages, respectively, based on the AWBM outputs. The estimated results have been evaluated as acceptable and show that in terms of time zoning, the trend of runoff in the years 2011, 2014, 2017 and 2018 is increasing and is in accordance with the floods that occurred in reality in the mentioned years. In the spatial zoning of flood risk using the fuzzy-ANP method, precipitation factors with 0.299856 and distance from the river with 0.150357 have the most significant impact compared to other factors about flood risk. However, the temperature factor with 0.0265413 has also obtained the least importance in causing floods in the studied basin. In the upper regions of the basin, the risk of flooding decreases as the height increases due to dense vegetation and resistant soil. 31.63% of the basin has very low flood risk, while 90.3% has a very high risk based on classification criteria. According to the results, it can be said that by taking appropriate measures and planning, the damage caused by floods in the studied area can be reduced as much as possible.
 
Funding
There is no funding support.
 
Authors’ Contribution
All of the authors approved the content of the manuscript and agreed on all aspects of the work.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Temporal and Spatial Zoning
  • Flooding
  • AWBM Model
  • Fuzzy-ANP Method
  1. امیدوار، حسن و امیری، ابراهیم. (1398). کاربرد مدل HEC-HMS برای شبیه‌سازی رواناب در حوضه آبریز توتکابن، گیلان. پژوهش‌های کاربردی در فنی و مهندسی، 2 (14)، 76-65.
  2. خیری‌زاده، منصور؛ ملکی، جبرئیل و عمونیا، حمید. (1391). پهنه‌بندی پتانسیل خطر وقوع سیلاب در حوضه آبریز مردق چای با استفاده از مدل ANP. پژوهش‌های ژئومورفولوژی کمی، 3، 56-39. https://doi.org/20.1001.1.22519424.1391.1.3.4.0
  3. خدمت‌زاده، علی؛ و حسنی، مهدی. (1399). پهنه‌بندی سیلاب حوضه آبریز شهرچای ارومیه با استفاده از مدلFuzzy-ANP. مهندسی جغرافیایی سرزمین، 4 (7)، 83-70. https://doi.org/20.1001.1.25381490.1399.4.7.6.1
  4. زاهدی، مجید و بیاتی خطیبی، مریم. (1387). هیدرولوژی. چاپ اول، تهران: انتشارات سمت.
  5. زبردست، اسفندیار. (1389). کاربرد فرآیند تحلیل شبکه‌ای (ANP) در برنامه‌ریزی شهری و منطقه‌ای. هنرهای زیبا-معماری و شهرسازی، 2 (41)، 90-79. https://doi.org/20.1001.1.22286020.1389.2.41.7.4
  6. زرین، هدایت‌الله؛ مقدم‌نیا، علیرضا؛ نام‌درست، جواد و مساعدی، ابوالفضل. (1392). شبیه‌سازی رواناب خروجی در حوزه‌های آبخیز فاقد آمار با استفاده از مدل بارش- رواناب AWBM (مطالعه موردی: استان سیستان و بلوچستان). پژوهش‌های حفاظت آب‌وخاک، 20 (2)، 208-195. https://doi.org/20.1001.1.23222069.1392.20.2.11.1
  7. علیجانی، بهلول و کاویانی، محمدرضا. (1374). نقش کوه‌های البرز در توزیع ارتفاعی بارش. تحقیقات جغرافیایی، 10 (38)، 12-1.
  8. علیجانی، بهلول. (1376). آب‌وهوای ایران. چاپ هشتم. تهران: انتشارات دانشگاه پیام نور.
  9. عابدینی، موسی و بهشتی، ابراهیم. (1395). پهنه‌بندی خطر وقوع سیلاب حوضه آبخیز لیقوان چای با استفاده از مدل فرآیند تحلیل شبکه و سیستم اطلاعات جغرافیایی. نشریه فضای جغرافیایی، 16 (55)، 312-293.
  10. قدیمی، مهرنوش؛ حاجی‌حسنی، نادیا؛ ملکیان، آرش و مقیمی، ابراهیم. (1401). پتانسیل سنجی سیل‌خیزی حوزه آبخیز کن با استفاده از پارامترهای موروفومتریک. مرتع و آبخیزداری، 75 (4)، 551-539. http://doi.org/10.22059/jrwm.2021.311132.1537
  11. مسعودیان، ابوالفضل. (1377). بررسی نظام تغییرات زمانی و مکانی بارش در ایران‌زمین. رساله دکتری، استاد راهنما: حسنعلی غیور، رشته جغرافیای طبیعی-اقلیم‌شناسی، دانشکده علوم جغرافیایی و برنامه‌ریزی، دانشگاه اصفهان.
  12. مؤمنی، منصور و شریفی سلیم، علیرضا. (1390). مدل‌ها و نرم‌افزارهای تصمیم‌گیری چند شاخصه. چاپ اول. تهران: نشر مؤلفین.
  13. محمدی‌وند، محمدرضا؛ عراقی‌نژاد، شهاب؛ ابراهیمی، کیومرث و مدرسی، فرشته. (1398). ارزیابی عملکرد مدل‌های AWBM، Sacramento و SIMHYD در شبیه‌سازی رواناب حوضه امامه با استفاده از بهینه‌ساز واسنجی خودکار الگوریتم ژنتیک. تحقیقات آب‌وخاک، 50 (7)، 1769-1759. http://doi.org/10.22059/ijswr.2019.258701.667923
  14. نجمایی، محمد. (1368). هیدرولوژی مهندسی. جلد دوم، تهران: انتشارات دانشگاه علم و صنعت ایران.
  15. نیسانی سامانی، نجمه و کریمی فیروزجانی، محمد. (1397). پهنه‌بندی ریسک‌پذیری سیل با استفاده از روش تصمیم‌گیری چندمعیاره مبتنی بر استدلال شهودی دمپستر- شافر (مطالعه موردی: حوضه آبخیز نکارود). پژوهش‌های جغرافیای طبیعی، 50(1)، 194-177. http://doi.org/10.22059/jphgr.2018.229904.1007026
  16. یوسف گمرکچی، افشین؛ طاهری، مژگان و خواجه گیلی، محمد. (1388). روندیابی جریان در زهکش‌های منطقه پست دلتایی دشت گیلان با استفاده از مدل HEC-RAS. پنجمین همایش ملی علوم و مهندسی انجمن آبخیزداری ایران، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
  17. Arsić, S., Nikolić, D., & Živković, Z. (2017). Hybrid SWOT-ANP-FANP model for prioritization strategies of sustainable development of ecotourism in National Park Djerdap. Serbia. Forest Policy and Economics, 12, 11-26. https://doi.org/10.1016/j.forpol.2017.02.003.
  18. Abedini, M., & Beheshti Javid, E. (2016). potential flooding, ANP, fuzzy logic, zoning, Lighvan river. Geographic Space, 16 (55), 293-312. [In Persian].
  19. Alijani, B. (1997). Iran's Weather, Iran. Tehran: Payame Noor University Publications. [In Persian].
  20. Alijani, B., & Kaviani, M. (1995). The role of Alborz mountains in the altitudinal distribution of precipitation. Geographical Research Quarterly, 10(38), 1-12. [In Persian].
  21. Becker, J., Becker, A., & Sałabun, W. (2017). Construction and Use of the ANP Decision Model Taking into Account the Experts’ Competence. International Conference on Knowledge Based and Intelligent Information and Engineering Systems, 112, 2269–2279. https://doi.org/10.1016/j.procs.2017.08.145
  22. Boughton, W. (2004). The Australian water balance model. Environmental Modelling and Software, 19, 943-956. https://doi.org/10.1016/j.envsoft.2003.10.007.
  23. Boughton, W. (2002). AWBM Catchment Water Balance Model. Calibration and Operation Manual, 30p. https://doi.org/10.1016/j.agwat.2004.10.012.
  24. Cakurs, U., & Yu, B. (1998). Using a water balance model AWBM to assess likely hydrologica response to a significant decrease of rainfall in south-west Western Australia. Aust. J. Water Resources, 2(2), 67–75.
  25. Garde, R.J. (2006) River Morphology. New Age International (P) Ltd, 388.
  26. Ghadimi, M., Hajihasani, N., Malekian, A., & Moghimi, E. (2022). Flood potential assessment of the Kan basin using morphometric pharameters. Pasture And Watershed Scientific-Research Journal, 4, 539-551. http://doi.org/10.22059/jrwm.2021.311132.1537 [In Persian].
  27. Jaiswall, R.K., Sohrat, A., & Birendra, B. (2020). Comparative evaluation of conceptual and physical rainfall–runoff models. Applied Water Science, 10(1), 1-12. https://doi.org/10.1007/s13201-019-1122-6.
  28. Kevin, O., Odhiambo Basil, T., Iro Ong’or, & Edwin, K.K. (2022). Assessment of rainwater harvesting potential of Rachuonyo North Sub-Catchment in Kenya using the Australian water balance model. AQUA — Water Infrastructure. Ecosystems and Society, 153-166. http://doi.org/10.2166/aqua.2022.153.
  29. Kult, J., Choi, W., & Choi, J. (2014). Sensitivity of the Snowmelt Runoff model to snow covered area and temperature inputs. Appl. Geogr, 55, 30–38. https://doi.org/10.1016/j.apgeog.2014.08.011.
  30. Khedmatzadeh, A., & Hasani, M. (2020). Flood zoning of Urmia shahrchay catchment area using Fuzzy-ANP model. Engineering Geography Of The Land, 7, 6-12. https://doi.org/20.1001.1.25381490.1399.4.7.6.1 [In Persian].
  31. Kheyrizadeh Arogh, M., Maleki, J., & Amonia, H. (2012). Flood risk zoning in Mardagh Chai watershed using ANP model. Quantitative geomorphology research, 3, 39-56. https://doi.org/20.1001.1.22519424.1391.1.3.4.0. [In Persian].
  32. Mohammadivand, M.R., Araghinejad, Sh., Ebrahimi, K., & Modaresi, F. (2019). Performance Evaluation of AWBM, Sacramento and SimHyd models in Runoff Simulation of the Amameh Watershed using Automatic Calibration Optimization Method of Genetic Algorithm. Soil And Water Research, 7, 1759-1769. http://doi.org/10.22059/ijswr.2019.258701.667923. [In Persian].
  33. Momeni, M., & Sharifi salim, A.R. (2011). Multi-indicator decision making models and software. Tehran: Publications of the authors. [In Persian].
  34. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., & Veith, T.L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. http://doi.org/10.13031/2013.23153.
  35. Masoudian, A. (1998). Investigating the of temporal and spatial changes of precipitation in Iran. Supervisor: Ghayor, H., & Ramsht, M.H. Ph.D. Thesis, University of Esfahan. [In Persian].
  36. Nagireddy, M.R., Subbarayan, S., Devanantham, A. (2023). Streamflow simulation using conceptual and neural network models in the Hemavathi sub-watershed, India. Geosystems and Geoenvironment, 2(2), 100153. https://doi.org/10.1016/j.geogeo.2022.100153.
  37. Neysani Samany, N., & Karimi Firozjaei, M. (2018). Flood Risk Assessment Using Multi-Criteria Decision Making Based on Dempster-Shafer Intuitive Reasoning (Case Study: Nekarood Basin). Physical Geography Research Quarterly, 50(1), 177-194. http://doi.org/10.22059/jphgr.2018.229904.1007026. [In Persian].
  38. Najmaei, M. (1990). Engineering Hydrology. Volume second print, Tehran: Elm o Sanaat University. [In Persian].
  39. Omidvar, H., & Amiri, E. (2019). Application of HEC-HMS model for simulation of runoff in Tutkaben watershed, Gilan. Applied research in technical and engineering, 14, 65-76. [In Persian].
  40. Saaty, T.L., & Vargas, L.G. (2006). Decision Making With the Analytic Network Process. New York. Springer Science, 363.
  41. Trivedi, A., Kumar, G.V., & Pyasi, s.K. (2021). Development of RRL AWBM model and investigation of its performance, efficiency and suitability in Shipra River Basin. Soil and Water Conservation, 2455-7145. http://doi.org/10.5958/2455-7145.2021.00020.5.
  42. Wang, G., Zhang, J., & He, R. (2007). Comparison of hydrological models in the middle reach of the Yellow River. Methodology in hydrology, 158-163.
  43. Yining, Li. (2021). Performance evaluation of Tanh and AWBM rainfall-runoff models. IOP Conf. Series: Earth and Environmental Science, 1315-1755. http://doi.org/10.1088/1755-1315/768/1/012048.
  44. Yousef Gomrokchi, A., Taheri, M., & Khaje gili, M. (2010). Trending of the flow in the drainages of the sub-delta region of Gilan plain using the model HEC-RAS. The 5th National Conference of Iran Watershed Sciences and Engineering. [In Persian].
  45. Zarrin, H.A., Moghaddamnia, A., Nam dorost, J., & Mosaedi, A. (2013). Simulation of outlet runoff in ungauged catchments by using AWBM Rainfall-Runoff Model. Water and Soil Conservation, 20(2). 195-208. https://doi.org/20.1001.1.23222069.1392.20.2.11.1. [In Persian].
  46. Zabardast, A. (2010). Application of Network Analysis Process In Urban and Regional Planning. Fine Arts Architecture and Urban Development, 41, 79-90. https://doi.org/20.1001.1.22286020.1389.2.41.7.4. [In Persian].
  47. Zahedi, M., & Bayati khatibi, M. (2007). Hydrology. First Edition, Tehran: Samt Publications. [In Persian].