خوشه‌های مکانی و روند تغییرات نواحی هم رخداد خشکسالی در ایران

نوع مقاله : مقاله کامل

نویسندگان

1 گروه جغرافیای طبیعی، دانشکده جغرافیا، دانشگاه تهران. تهران،ایران

2 گروه جغرافیای طبیعی، دانشکده جغرافیا، دانشگاه تهران، ایران

3 گروه جغرافیای طبیعی، دانشکده جغرافیا، دانشگاه تهران. ایران

4 گروه جغرافیای طبیعی، دانشکده جغرافیا، دانشگاه تهران,، تهران، ایران

چکیده

بی‌هنجاری‌های بارشی به‌ویژه خشکسالی و تغییرات آن از مورد توجه‌ترین موضوعات اقلیم‌شناسی است. مطالعه حاضر باهدف ناحیه‌بندی رخدادهای خشکسالی و ارزیابی روند تغییرات گستره آن در مقیاس‌های زمانی سالانه، فصلی و ماهانه انجام پذیرفت. به این منظور از داده‌های بارش ماهانه EAR5 و شاخص خشکسالی RAI بهره گرفته شد. برای استخراج خوشه‌های مکانی و روند تغییرات آنها، از تحلیل خوشه‌ای سلسله مراتبی مبتنی بر فاصله همبستگی - ادغام وارد و آزمون من‌کندال و شیب‌خط رگرسیونی استفاده گردید. تعداد خوشه‌های مکانی (نواحی) هم‌رخداد خشکسالی در فصل و ماه‌های بارشی نسبت به ماه‌های کم‌بارش مانند فصل تابستان، وسیع‌ و همگن‌‌تر است. نواحی مشخص جغرافیایی -اقلیمی مانند: جنوب شرق، مرکز، شمال غرب و غرب -جنوب غرب، در بیشتر زمان‌ها دیده می‌شود. تغییرات خشکسالی سالانه در هیچ یک از نواحی روند معنی‌داری نشان نمی‌دهد که این می‌تواند از تضاد درون فصلی و ماهانه در روند تغییرات خشکسالی باشد. به‌طوری‌که در فصل زمستان و بهار (دوره اصلی بارش کشور) روند افزایشی و در مقابل در فصل پاییز، روندی کاهشی خشکسالی مشاهده شد. در مقیاس ماهانه نیز مشهودترین روند افزایشی در دو ماه اصلی بارش کشور یعنی ژانویه، مارس و کاهشی در ماه نوامبر رخ‌داده است. نتایج پژوهش می‌تواند گویای جابه‌جایی زمانی بارش یا تغییر رژیم بارش کشور باشد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial clusters and trends of change in drought co-occurrence regions in Iran

نویسندگان [English]

  • Susan Heidari 1
  • Mostafa Karimi 2
  • Ghasem Azizi 3
  • Aliakbar Shamsipour 4
1 Department of Physical Geography, Faculty of Geography, University of Tehran, Iran
2 Department of Physical Geography, Faculty of Geography, University of Tehran, Iran
3 Department of Physical Geography, Faculty of Geography, University of Tehran, Iran
4 Department of Physical Geography, Faculty of Geography, University of Tehran, Iran
چکیده [English]

ABSTRACT
Precipitation anomalies, especially drought and its changes are among the most important topics in climatology. The current study was carried out to regionalize drought events and evaluate the changes in their extent in annual, seasonal and monthly time scales. For this purpose, EAR5 monthly rainfall data and the RAI drought index were used. Hierarchical cluster analysis based on Ward's correlation-integration distance Mann-Kendall's test and the slope of the regression line were used to extract spatial clusters and their changes. The number of spatial clusters (areas) of co-occurrence of drought in the rainy season and months is wider and more homogeneous than in the less rainy months such as the summer season. Certain geographical-climatic areas such as Southeast, Center, Northwest and West-Southwest are seen most of the time. The annual drought changes in none of the areas show a significant trend, which could be due to intra-seasonal and monthly contrasts in drought changes. So in winter and spring (the main rainfall period of the country), an increasing trend was observed, and on the other hand, in autumn, a decreasing trend of drought was observed. On a monthly scale, the most obvious increase trend has occurred in the two main months of rainfall in the country, namely January and March, and a decrease in November. The results of the research can indicate the temporal shift of rainfall or the change in the country's rainfall regime
Extended abstract
Introduction
Drought is a global challenge with profound economic, social and environmental impacts. The amalgamation of climate change and socio-economic dynamics has exacerbated the frequency and severity of drought occurrences. Delving into the nexus of these factors and scrutinizing the temporal variability of drought as a fundamental priority has fostering advancements in drought management, forecasting and the quest for efficacious solutions.
Iran is a country that constantly confronting the challenges of drought. Numerous research underscores the variegated precipitation oscillations and drought intensities pervading different regions of Iran.
In addition, investigations into the environmental and agriculture repercussions of drought have been conducted, with scholars endeavoring to forecasting future drought trends through forecasting and simulation models. The introduction of drought indicators, modification, and development of methods for drought assessment are of great importance for the management of this phenomenon. Resource optimization and crafting adaptive strategies tailored to the drought patterns across disparate regions can hold promise in surmounting this challenge. Moreover, an incisive assessment of drought risks is imperative for the codification of preemptive policies and the efficacious management of this phenomenon.
However, further research is needed on the temporal and spatial variability of drought. While extant research, has gravitated towards regionalization and impact of drought risks the spatial stability across divergent timeframes remains inadequately explored. Studying spatial clustering elucidating homogeneous drought patterns can significantly improve drought forecasting, warning and management processes. This challenge propelling researchers towards novel inquiries and innovative solutions in the realm of drought dynamics.
 
Methodology
The scope of research is Iran's expansive terrain, from the Zagros and Alborz mountain ranges to the vast internal plains and coastal margins of the Persian Gulf, the Oman Sea in the south and the Caspian Sea in the north. The extensive environmental diversity, resulting from the country's complex topography, engender a significant difference in the spatial and temporal patterns of precipitation among different regions. Different precipitation patterns and spatial changes along with temporal changes lead to phenomena such as drought, heavy rains and floods in Iran
To study the spatial and temporal patterns of precipitation in Iran, ERA5 data have been used as a new and powerful data source. In pursuit of comprehending Iran's spatial and temporal patterns of precipitation, ERA5 data have been used as a new and powerful data source. These data are from the ECMWF database and have high spatial accuracy and different time intervals. Prior research has shown that these databases considered as a robust and dependable source for precipitation-related studies in Iran. By utilizing this database, this investigation explore drought patterns, identifying co-occurring drought clusters analysis using drought indices. Furthermore, cluster analysis is used to examine spatial clusters of drought at annual, seasonal, and monthly scales, and to assess changes in drought extent within each cluster.
 
Results and Discussion
Annual drought clusters in Iran, delineating seven different spatial clusters that are associated with different geographical and climatic features, including topography, geographical latitude, and precipitation system trajectories. These clusters include different regions from the Caspian Sea's southern coast to the central plains and deserts, the northern Zagros and foothills, the southwest from the Persian Gulf coasts to the foothills of the central Zagros, and the southeast and east. These clusters indicate the simultaneous occurrence of annual droughts, with notable regional differences, especially along the Caspian Sea, where variations between the western and northwestern regions, as well as the western and southwestern regions, are evident.
Analyses proffers discernible disparities in the magnitude of drought changes within these annual clusters. While the central region and the southern coasts of the Caspian Sea show a decreasing trend, the central plains and deserts show increasing trends underscoring the disparate climatic and geographical influences. Furthermore, seasonal cluster analysis indicates that different seasonal drought regions are observed in Iran during different seasons of the year. For example, in summer, despite reduced precipitation in the northern and southeastern regions, the number of drought clusters increases, possibly due to occasional and scattered convective rainfall. In contrast, in fall, spring, and even summer, the seasonal drought regions expand along the geographical length, with significant differences in the northwest, which is divided into two regions in fall and expands widely in winter, covering the northern part of Zagros and the western part of the Caspian Sea and Zagros in spring.
In the analysis of seasonal drought changes in Iran, an overall increase in winter drought and a decrease in fall drought are observed. This trend is associated with significant changes in different regions of Iran. Southern Iran, southwestern Iran, and the northern half of the central plateau are experiencing a decrease in fall drought. Conversely, an increase in winter drought is observed in Kerman-east and northeastern regions of Iran. In spring, changes in seasonal drought are observed, but these changes are not significant and have occurred in two regions: the southwest Zagros in southern and central Iran. Analyses propose that these changes may be due to changes in atmospheric circulation and increased atmospheric moisture during this season. Spatial maps illustrating the monthly occurrence of drought clusters show significant differences across various geographical regions throughout the year. This diversity escalates from a minimum of six regions during consecutive cold months to nine regions during two consecutive warm months. Geographical features, such as the Zagros and Alborz mountain ranges, are implicated in shaping monthly drought clusters, particularly during months such as October, December, April, and May.
While analyzing the changes in extent of drought across Iran's different regions, a noticeable pattern observed throughout the year. In January, drought extent notably increases in the northeast and east of Iran and along the Caspian Sea coasts. While the increase in drought extent is not significant in the central plains and the southern coasts up to the eastern border. In November, this pattern reverses, with a more pronounced reduction in extent of drought observed in the central plains and southern coasts extending to the eastern border. In March and April, an increase in drought extent evident in the central, eastern, northeastern, and southwestern regions, while a significant decrease is observed in southeastern Iran. The observed pattern indicates that monthly changes in drought in Iran are related to increased precipitation variability and changes in precipitation patterns throughout the year.
 
Conclusion
This study pursued two primary objectives. Firstly, it employed spatial clustering at monthly, seasonal, and annual scales to delineate regions experiencing concurrent drought conditions. The findings revealed a spatial and temporal alignment of drought patterns in Iran with its geographical and climatic attributes The emergence of spatial clusters with different drought behaviors at varying times suggests that the influence of changes in atmospheric circulation and precipitation systems outweighs geographical constancy. Notably, while discrepancies in the patterns of monthly and seasonal drought variations do not significantly reflect the annual changes, this feature becomes a distinctive characteristic of the drought variation pattern in Iran. Such differences may be due to changes in the atmospheric circulation pattern and the activity of precipitation systems. Ultimately, the transition in precipitation regimes, characterized by a decrease in the average number of rainy days and an increase in precipitation intensity, underscores to future climate challenges in Iran. These challenges could profoundly impact the region's water resources and economy.
 
Funding
There is no funding support.
 
Authors’ Contribution
All of the authors approved the content of the manuscript and agreed on all aspects of the work.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Precipitation variability
  • Drought regions
  • Mann-Kendall
  • Cluster analysis
  • Iran
  1. آذرخشی، مریم؛ فرزادمهر، جلیل؛ اصلاح، مهدی و صحابی، حسین. ( 1392). بررسی روند تغییرات سالانه و فصلی بارش و پارامترهای دما در مناطق مختلف آب‌وهوایی ایران. مرتع و آبخیزداری، 66 (1)، 16-1.
  2. بارانی، نادر و کرمی، آیت‌اله. ( 1398). تحلیل روند سالانه پارامترهای اقلیمی دما و بارش در نواحی ده‌گانه زراعی-اکولوژیکی ایران. علوم محیطی، 17 (4)، 90-75.  https://doi.org/10.29252/ENVS.17.4.75
  3. بلوچی، زیور؛ محمودی، پیمان و حمیدیان‌پور، محسن. (1400). تحلیل خشکسالی‌های محلی و منطقه‌ای ایران با استفاده از تئوری گردش‌ها و شاخص بارش استاندارد شده (SPI). مطالعات جغرافیایی مناطق خشک، 9 (46)، 75-53.
  4. پیری، حلیمه؛ عباس‌زاده، محبوبه؛ راهداری، وحید و ملکی، سعیده. (1392). ارزیابی تطبیقی 4 نمایه خشکسالی هواشناسی با استفاده از روش تحلیل خوشه‌ای (مطالعه موردی استان سیستان و بلوچستان). مهندسی منابع آب، 6 (17)، 36-25. https://doi.org/20.1001.1.20086377.1392.6.17.3.1
  5. ترابی‌پوده، حسن؛ ایزدجو، فرهاد و همه‌زاده، پرستو. ( 1397). تحلیل روند تغییرات بارش کل و بارش مؤثر در کل ایران. پژوهش‌ آب ایران، 12 (4)، 10-1.
  6. جوی‌زاده، سعید و حجازی‌زاده، زهرا. (1398). تحلیل آمار فضایی خشکسالی در ایران. تحقیقات کاربردی علوم جغرافیایی، 19 (53)، 277-251.
  7. حجازی‌زاده، زهرا؛ پژوه، فاطمه و شکیبا، هانیه. (1400). واکاوی دقت شاخص‌های خشکسالی و تعیین بهترین شاخص اقلیمی در جنوب‌شرق ایران. جغرافیا، 19 (68)، 21-5. https://doi.org/20.1001.1.27172996.1400.19.1.1.3
  8. حسنعلی‌زاده، نفسیه؛ مساعدی، ابوالفضل؛ ظهیری، عبداالرضا و بابانژاد، منوچهر. (1393). تعیین نواحی همگن توزیع بارش سالانه در سطح استان گلستان با استفاده از تحلیل خوشه‌ای و روس گشتاورهای خطی. آب‌وخاک (علوم و صنایع کشاورزی)، 28 (5)، 1071-1061.  https://doi.org/10.22067/JSW.V0I0.26319
  9. حیدری، سوسن؛ کریمی، مصطفی و بیرانوند، آذر . (1402). ارزیابی عملکرد داده‌های بازتحلیل ERA5 در تخمین بارش ایران و واکاوی فضایی رژیم بارشی کشور. پژوهش‌های دانش زمین، 15(2)، 24-1.  https://doi.org/10.48308/esrj.2024.232757.1191
  10. حیدری، سوسن؛ کریمی، مصطفی؛ عزیزی، قاسم و شمسی‌پور، علی اکبر. (1401). تبیین الگوهای مکانی شدت‌های خشکسالی در ایران. تحلیل فضایی مخاطرات محیطی، 9 (4)، 20-1. https://doi.org/20.1001.1.24237892.1401.9.4.2.4
  11. حیدری، سوسن؛ کریمی، مصطفی؛ عزیزی، قاسم و شمسی‌پور، علی‌اکبر. (1402). کمّی‌سازی، چالش اولیه ارزیابی و مدیریت ریسک خشکسالی. کاوش‌های جغرافیایی مناطق بیابانی، 11 (1)، 206-192.  https://doi.org/10.22034/GRD.2023.20370.1588
  12. خسروی، محمود؛ زهرایی، اکبر؛ حیدری. حسین و بنی‌نعیمه، سارا. (1391). تعیین مناطق هم خشکسالی استان گیلان با استفاده از شاخص ناهنجاری بارش، 1(3)، 20-1. https://doi.org/10.22067/GEO.V1I3.13231
  13. خسروی، محمود؛ شجاع، فائزه و پاکباز، هاجر. (1398).  بررسی منابع تأمین رطوبت رویدادهای بارشی تابستانه جنوب‌شرقی ایران. مهندسی منابع آب، 12 (41)، 144-12.  https://doi.org/20.1001.1.20086377.1398.12.41.10.8
  14. داداشی رودباری، عباسعلی و کیخسروی کیانی، محمد. (1395). واکاوی مکانی و زمانی روند بارش سالانه ایران طی سال‌های 1329 تا 1386.  محیط زیست و مهندس آب، 2 (2)، 121-111.
  15. دانشمند، حجت‌الله و محمودی، پیمان. (1395). تحلیل طیفی خشکسالی‌های ایران. ژئوفیزیک ایران، 10 (4)، 47-28.
  16. دوستان، رضا. (1394). تحلیل بر خشکسالی‌های ایران در نیم قرن گذشته. پژوهش‌های اقلیم‌شناسی، 1394 (23)، 18-1.
  17. رضئیی، طیب. (1396). شناسایی رژیم‌های بارشی ایران با استفاده از روش‌های چند متغیره. فیزیک زمین و فضا، 43 (3)، 695-673. https://doi.org/10.22059/JESPHYS.2017.60290
  18. رورده، همت‌الله؛ قاسمی، جمال؛ یوسفی، یدالله و قاسمی، زهره. (1398). خوشه‌بندی بارش ایران با استفاده از روش نوین مبتنی برکاربرد نگاشت SVD و خوشه‌بندی فازی FCM. آمایش جغرافیایی فضا، 9 (31)، 124-11.  https://doi.org/10.30488/GPS.2019.90113
  19. صلاحی، برومند و فریدپور، مجتبی. (1395). تحلیل فضایی خشکسالی اقلیمی شمال‌غرب ایران با استفاده از آماره خودهمبستگی فضایی. تحلیل فضایی مخاطرات محیطی، 3 (3)، 20-1.
  20. علیجانی، بهلول؛ سلیقه، محمد، سلیقه، دارند، محمد و جاهدی، آرمان. (1400). تغییرات میانگین مداری و نصف‌النهاری بادهای غربی در دوره‌های تر و خشک غرب ایران. نیوار، 45 (112)، 90-77. https://doi.org/10.30467/NIVAR.2021.276760.1183
  21. علیجانی، بهلول؛ مفیدی، عباس؛ جعفرپور، زین‌العابدین و اکبری بیدختی، عباسعلی. (1390). الگوهای گردش جو بارش‌های تابستانه جنوب شرق ایران در ماه ژوئیه 1994. فیزیک زمین و فضا، 37 (3)، 227-205. https://doi.org/20.1001.1.2538371.1390.37.3.15.0
  22. غیور، حسنعلی؛ مسعودیان، سیدابوالفضل؛ آزادی، مجید و نوری، حمید. (1390). تحلیل زمانی و مکانی رویدادهای بارشی سواحل جنوبی خزر. تحقیقات جغرافیایی، 25 (100)، 30-1.
  23. فغانی، منیره؛ قربانی، خلیل و سالاری جزی، میثم. (1395). تحلیل تغییرات زمانی-مکانی خشکسالی‌های فصلی هواشناسی. هواشناسی کشاورزی، 4 (1)، 11-1.
  24. فغانی، منیره؛ قربانی، خلیل و سالاری جزی، میثم. (1395). خوشه‌بندی پهنه جغرافیایی ایران از لحاظ رخداد خشکسالی‌های بلندمدت هواشناسی، آبیاری و زهکشی ایران، 10 (59)، 659-649.
  25. قائمی، علیرضا؛ هاشمی منفرد، سیدآرمان؛ بحرپیما، عبدالحمید؛ محمودی، پیمان و ذونعمت کرمانی، محمد. (1401). تغییرات مکانی-زمانی ویژگی‌های خشکسالی پیش‌بینی شده ایران، تحت سناریورهای تغییر اقلیم. هواشناسی و علوم جوّ، 5 (1)، 80-68. https://doi.org/10.22034/JMAS.2023.390166.1199
  26. کریمی، مصطفی؛ حیدری، سوسن و رفعتی، سمیه. (1400). روند تغییرات مؤلفه‌های جوی چرخه آب (بارش و آب‌قابل بارش) در حوضه های آبریز ایران. تحلیل فضایی مخاطرات محیطی، 8 (2)، 54-33.
  27. کریمی، مصطفی و حیدری، سوسن. (1402). تغییرپذیری و روند تغییرات شدت-گستره‌ی ترسالی و خشکسالی در ایران. مخاطرات محیط طبیعی، 12(36)، 150-129.  https://doi.org/10.22111/JNEH.2022.42519.1905
  28. گرامی، محمدصالح. (1402). تحلیل زمانی-مکانی و مکانیسم بارش همرفتی در ایران. رساله دکتری، به راهنمایی مصطفی کریمی، دانشکده جغرافیا، دانشگاه تهران.
  29. لشکری، حسن؛ کیانی، مهرداد و قائمی، هوشنگ. (1398). رخداد فرین بارشی فرین فصل زمستان بر روی ناهمواری‌های زاگرس در غرب ایران؛ مطالعه موردی ماه ژانویه. مطالعات علوم محیط زیست،  4 (2)، 1362-1350.
  30. محمدی، بختیار. (1390). تحلیل روند بارش سالانه ایران. جغرافیا و برنامه‌ریزی محیطی، 22(3)، 106-95.   https://doi.org/20.1001.1.20085362.1390.22.3.6.1
  31. مسعودیان، سیدابوالفضل. (1390). آب‌وهوای ایران. چاپ اول، مشهد: شریعه توس.
  32. مسعودیان، سیدابوالفضل. (1402). بررسی آب‌وهواشناختی بارش‌های سیل‌زای بهار 1398 در غرب ایران. مخاطرات محیط طبیعی، 12 (37)، 116-101.  https://doi.org/10.22111/JNEH.2022.43039.1914
  33. میرا حسنی، مرضیه‌سادات؛ سلمان ماهینی، عبدالرسول؛ مدرس، رضا؛ سفیانیان، علیرضا؛ جعفری، رضا و محمدی، جهانگیر. (1397). پایش مکانی-زمانی خشکسالی هواشناسی براساس پهنه‌های خوشه‌های ایستگاهی در حوزه آبخیز زاینده‌رود. مهندسی و مدیریت آبخیز، 10 (4)، 760-739.
  34. نادی، مهدی و خلیلی، علی. (1392). طبقه‌بندی اقلیم بارش ایران با روش تحلیل عاملی-خوشه‌ای. تحقیقات آب و خاک ایران، 44 (3)، 242-235.  https://doi.org/10.22059/IJSWR.2013.50213
  35. ناظری تهرودی؛ محمد؛ خلیلی، کیوان و احمدی، فرشاد. (1395). تحلیل روند تغییرات ایستگاهی و منطقه‌ای بارش نیم قرن اخیر کشور ایران. آب‌وخاک، 30 (2)، 654-643. https://doi.org/10.22067/JSW.V30I2.39130
  36. Abarghouei, H., Asadi Zarch, M.A., Dastorani, M.T., Kousari, M.R., & Safari Zarch, M. (2011). The survey of climatic drought trend in Iran. Stochastic Environmental Research and Risk Assessment, 25, 851-863. https://doi.org/10.1007/s00477-011-0491-7
  37. Aliabad, F.A., hakimzadeh, M.A., & Shojaei, S. (2019). The impact of drought and decline in groundwater levels on the spread of sand dunes in the plain in Iran. Sustainable Water Resources Management5, 541-555. https://doi.org/10.1007/s40899-017-0204-6
  38. Alijani, B., Mofidi, A., & Aliakbari-Bidokhti, A. A. (2011). Atmospheric circulation patterns of the summertime rainfalls of southeastern Iran during July 1994. Journal of the Earth and Space Physics, 37(3), 205-227. https://20.1001.1.2538371.1390.37.3.15.0 [In Persian].
  39. Alijani, B., Saligheh, M., Darand, M., & Jahedi, A. (2021). Mean Zonal and Meridional Variations of Westerlies in wet and dry periods in the western Iran. Nivar45(112-113), 77-90. http://doi.org/10.30467/NIVAR.2021.276760.1183 [In Persian]  
  40. Amirataee, B., & Montaseri, M. (2017). The performance of SPI and PNPI in analyzing the spatial and temporal trend of dry and wet periods over Iran. Natural Hazards86, 89-106. https://doi.org/10.1007/s11069-016-2675-4
  41. Azarakhshi, M., Farzadmehr, J., Eslah, M., & Sahabi, H. (2013). An Investigation on Trends of Annual and Seasonal Rainfall and Temperature in Different Climatologically Regions of Iran.  Journal of Range and Watershed Managment, 66(1), 1-16. https://doi.org/10.22059/jrwm.2013.35324 [In Persian]
  42. Bahrami, M., Bazrkar, S., & Zarei, A.R. (2019). Modeling, prediction and trend assessment of drought in Iran using standardized precipitation index. Journal of Water and Climate Change10(1), pp.181-196. https://doi.org/10.2166/wcc.2018.174
  43. Balouchi, Z., Mahmoudi, P., & Hamidianpour, M. (2022). Analyzing Iranâ s Local and Regional Droughts Using the Theory of Runs and Standardized Precipitation Index (SPI). Journal of Arid Regions Geographic Studies, 12(46), 53-75. [In Persian].
  44. Barani, N.,  & Karami, A. (2019). Annual trend analysis of climate parameters of temperature and precipitation in decuple agroecology regions of Iran, Environmental Sciences, 17(4), 75-90. http://doi.org/10.29252/envs.17.4.75 [In Persian]
  45. Bonis, T., & Oudot, S. (2018). A fuzzy clustering algorithm for the mode-seeking framework. Pattern Recognition Letters, 102, 43-73.
  46. Byun, H.R., & Wilhite, D.A. (1999). Objective quantification of drought severity and duration. Journal of climate, 12(9), 2747-2756. https://doi.org/10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2
  47. Cantos, J.O., Gil, A.M., & Amorós, A.M.R. (2000). Diferentes percepciones de la sequía en España: adaptación, catastrofismo e intentos de corrección. Investigaciones Geográficas (España), (23), 5-46.
  48. Cordery, I., & McCall, M. (2000). A model for forecasting drought from teleconnections. Water Resources Research, 36(3), 763-768.  https://doi.org/10.1029/1999WR900318
  49. Dadashi Roudbari, A., & Keykhosravi Kiani, M. (2016). Analysis of the Spatial and Temporal Trend of Annual Rainfall in Iran during 1950-2007. Environment and Water Engineering2(2), 111-121. [In Persian]
  50. Daneshmand, H. & Mahmoudi, P. (2017). A spectral analysis of Iran's droughts. Iranian Journal of Geophysics, 10(4), 28-47. [In Persian].
  51. Daneshmand, H., & Mahmoudi, P. (2017). Estimation and assessment of temporal stability of periodicities of droughts in Iran. Water Resources Management31, 3413-3426. https://doi.org/10.1007/s11269-017-1676-8
  52. Daneshmand, H. and Mahmoudi, P., 2017. Estimation and assessment of temporal stability of periodicities of droughts in Iran. Water Resources Management, 31, 3413-3426.     https://doi.org/10.1007/s11269-017-1676-8
  53. De Carvalho, F.D.A., Lechevallier, Y., & De Melo, F.M. (2012). Partitioning hard clustering algorithms based on multiple dissimilarity matrices. Pattern Recognition, 45(1), 447–464. https://doi.org/10.1016/j.patcog.2011.05.016
  54. Doostan, R. (2015). Analysis of the Iran droughts in the past half century. Journal of Climate research, 1394(23), 1-18. [In Persian].
  55. Dracup, J.A., Lee, K.S., & Paulson Jr, E.G. (1980). On the statistical characteristics of drought events. Water resources research, 16(2), 289-296. https://doi.org/10.1029/WR016i002p00289
  56. Faghani, M., Ghorbani, K., & Salarijazi, M. (2016). Spatial-temporal analysis of seasonal meteorological drought. Journal of Agricultural Meteorology, 4(1), 1-11.  [In Persian].
  57. Ferreira, M. R., de Carvalho, F. D. A., & Simões, E. C. (2016). Kernel based hard clustering methods with kernelization of the metric and automatic weighting of the variables. Pattern Recognition, 51, 310-321. https://doi.org/10.1016/j.patcog.2015.09.025
  58. Ghaedi, S. (2021). Anomalies of precipitation and drought in objectively derived climate regions of Iran. Hungarian Geographical Bulletin70(2), 163-174. https://doi.org/10.15201/hungeobull.70.2.5
  59. Ghaemi, A., Hashemi Monfared, S. A., Bahrpeyma, A., Mahmoudi, P., & Zounemat-Kermani, M. (2022). Spatiotemporal variation of projected drought characteristics of Iran under the climate change scenarios. Journal of Meteorology and Atmospheric Science, 5(1), 68-80. https://doi.org/10.22034/JMAS.2023.390166.1199 [In Persian].
  60. Ghajarnia, N., Akbari, M., Saemian, P., Ehsani, M.R., Hosseini‐Moghari, S.M., Azizian, A., Kalantari, Z., Behrangi, A., Tourian, M.J., Klöve, B., & Haghighi, A.T. (2022). Evaluating the evolution of ECMWF precipitation products using observational data for Iran: From ERA40 to ERA5. Earth and Space Science, 9(10), p.e2022EA002352. https://doi.org/10.1029/2022EA002352
  61. Ghayor, H. A., Masoudian, S. A., Azadi, M., & Noori, H. (2011). Temporal and Spatial Analysis of Precipitation Events in the Southern Coasts of Caspian Sea. Geographical Research, 2011; 26(100): 1-30. [In Persian].
  62. Hasanalizadeh, N., Mosaedi, A., Zahiri, A., & Babanezhad, M., 2015. Determine of homogeneous regions distribution of annual rainfall in Golestan Province using clustering and L-moments. Water and Soil, 28(5), 1061-1071. [In Persian].
  63. Heidari, Karimi, M.,  S., Azizi, G., & Shamsipour, A. (2023). Explaining the spatial patterns of drought intensities in Iran. Journal of Spatial Analysis Environmental hazarts, 9(4), 1-20. https://doi.org/20.1001.1.24237892.1401.9.4.2.4 [In Persian].  
  64. Heidari, S., Karimi, M., Azizi, G., & Shamsipour, A. (2023). Quantification, The first challenge of drought risk assessment and management. The Journal of Geographical Research on Desert Areas, 11(1), 192-206.https://doi: 10.22034/GRD.2023.20370.1588 [In Persian].
  65. Heidari, S., Karimi, M., & Beyranvand, A. (2024). Evaluation the performance of ERA5 Reanalysis Data in Iran's rainfall estimation and spatial analysis of the country's precipitation regime, Researches in Earth Sciences, 16(2). https://doi: 10.48308/esrj.2024.232757.1191. [In Persian].
  66. Hejazizadeh, Z., Pajooh, F., & Shakiba, H. (2021). Analyzing the accuracy of drought indicators and determining the best climatic indicators in southeastern Iran. Geography, 19(68), 5-21. [In Persian].
  67. Heydari, H., Momeni, M., & Nadi,S., )2024(. Innovative data clustering method improves drought prediction in heterogeneous landscapes using GEE-derived remote sensing indices. Remote Sensing Applications, 33, 101-112. https://doi.org/10.1016/j.rsase.2023.101112.
  68. Izadi, N., Karakani, E.G., Saadatabadi, A.R., Shamsipour, A., Fattahi, E., & Habibi, M. (2021). Evaluation of ERA5 precipitation accuracy based on various time scales over Iran during 2000–2018. Water, 13(18), 2538. https://doi.org/10.3390/w13182538
  69. Javizadeh, S., & hejazizadeh, Z. (2019). Analysis of Drought Spatial Statistics in Iran. Applied Research in Geographical Sciences, 19 (53), 251-277. [In Persian]. 
  70. Karimi, M., & Heidari, S. (2023). Variability and trend of changes in the severity-area of drought and wet in Iran. Journal of Natural Environmental Hazards, 12(36), 1-1. https://doi.org/10.22111/JNEH.2022.42519.1905 [In Persian].  
  71. Karimi, M., Heidari, S., & Rafati, S. (2021). The trend of atmospheric water cycle components (precipitation and precipitable water) in catchments of iran. Journal of Spatial Analysis Environmental Hazarts, 8(2), 33-54. https://doi.org/10.52547/jsaeh.8.2.33 [In Persian].
  72. Kendall M G. (1975). Rank Correlation Methods. 4th Edition Charles Griffin, London. 6 P.
  73. Khajeh, S., Paimozd, S., & Moghaddasi, M. (2017). Assessing the impact of climate changes on hydrological drought based on reservoir performance indices (case study: ZayandehRud River basin, Iran). Water Resources Management31, 2595-2610. https://doi.org/10.1007/s11269-017-1642-5
  74. Khosravi, M., Shoja, F., & Pakbaz, H.  (2019). A Survey on the of the Summer Precipitation Events Moisture Supply Resources of Southeast of Iran'. Water Resources Engineering, 12(41), 127-144. [In Persian].
  75. Khosravi, M., Zahraei, A., Heydari, H., & Bani Naimeh, S., 2012. Designated drought regions of Gilan using rainfall anomaly index. Journal of Geography and Environmental Hazards, 1(3), pp.1-20. https://doi.org/10.22067/GEO.V1I3.13231 [In Persian].  
  76. Kiani, M., Lashkari, H., & Ghaemi, H. (2019). Extreme Precipitation Event of Winter Over the Zagros Mountains in Western Iran. Journal of Environmental Science Studies, 4(2), pp.1350-1362. [In Persian].
  77. Kogan, F.N. (1995). Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society, 76(5), 655-668. https://doi.org/10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2
  78. Kogan, F.N. (1997). Global drought watch from space. Bulletin of the American Meteorological Society, 78(4), 621-636. https://doi.org/10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2
  79. Lana, X., & Burgueño, A. (1998). Probabilities of repeated long dry episodes based on the Poisson distribution. An example for Catalonia (NE Spain). Theoretical and Applied Climatology, 60, 111-120. https://doi.org/10.1007/s007040050037
  80. Lentz, J.A. (2012). Developing a geospatial protocol for coral epizootiology. Louisiana State University and Agricultural & Mechanical College.
  81. Lloyd‐Hughes, B., & Saunders, M.A. (2002). Seasonal prediction of European spring precipitation from El Niño–Southern Oscillation and local sea‐surface temperatures. International Journal of Climatology: A Journal of the Royal Meteorological Society, 22(1), 1-14.  https://doi.org/10.1002/joc.723
  82. Mahmoudi, P., Maity, R., Amir Jahanshahi, S.M., & Chanda, K. (2022). Changing spectral patterns of long‐term drought propensity in Iran through reliability–resilience–vulnerability‐based Drought Management Index. International Journal of Climatology, 42(8), pp.4147-4163. https://doi.org/10.1002/joc.7454
  83. Mann H B. (1945). Nonparametric tests against trend. Econometrica,13, 245–259.
  84. Mansouri Daneshvar, M.R., Bagherzadeh, A., & Khosravi, M. (2013). Assessment of drought hazard impact on wheat cultivation using standardized precipitation index in Iran. Arabian Journal of Geosciences6, pp.4463-4473. https://doi.org/10.1007/s12517-012-0695-2
  85. Masoodian, S.A. (2023). A Climatological Survey of Spring of 2019 Flood-causing precipitations in the western parts of Iran. Journal of Natural Environmental Hazards, 12(37), 101-116. https://doi.org/10.22111/JNEH.2022.43039.1914 [In Persian].
  86. Masoudian, S.A. (2011). Climate of Iran. first edition, Mashhad: Sharia Tos. [In Persian].
  87. Mirahsani, M.S., Mahini, A.S., Moddares, R., Soffianian, A., Jafari, R., & Mohhamadi, J. (2018). Spatio-temporal monitoring of meteorological drought based on the zoning of station clusters in Zayandeh-rud Basin. Watershed Engineering and Management, 10(4), 739-760. [In Persian].
  88. Modarres, R., & da Silva, V.D.P.R. (2007). Rainfall trends in arid and semi-arid regions of Iran. Journal of arid environments70(2), 344-355. https://doi.org/10.1016/j.jaridenv.2006.12.024
  89. Modarres, R., Sarhadi, A., & Burn, D.H. (2016). Changes of extreme drought and flood events in Iran. Global and Planetary Change144, 67-81. https://doi.org/10.1016/j.gloplacha.2016.07.008
  90. Moghbeli, A., Delbari, M., & Amiri, M. (2020). Application of a standardized precipitation index for mapping drought severity in an arid climate region, southeastern Iran. Arabian Journal of Geosciences13, 1-16. https://doi.org/10.1007/s12517-020-5201-7
  91. Mohammadi, B. (2011). Trend Analysis of annual rainfall over Iran. Geography and Environmental Planning22(3), 95-106. https://doi.org/20.1001.1.20085362.1390.22.3.6.1 [In Persian]
  92. Mosaffa, H., Sadeghi, M., Hayatbini, N., Afzali Gorooh, V., Akbari Asanjan, A., Nguyen, P., & Sorooshian, S., 2020. Spatiotemporal variations of precipitation over Iran using the high-resolution and nearly four decades satellite-based PERSIANN-CDR dataset. Remote Sensing12(10), 1584. https://doi.org/10.3390/rs12101584
  93. Nadi, M., & Khalili, A. (2013). Classification of Iran’s precipitation climate using factor-cluster analysis method. Iranian Journal of Soil and Water Research, 44(3), 235-242. https://doi.org/10.22059/IJSWR.2013.50213 [In Persian].
  94. Namias, J. (1983). Some causes of United States drought. Journal of Applied Meteorology and Climatology, 22(1), 30-39. https://doi.org/10.1175/1520-0450(1983)022<0030:SCOUSD>2.0.CO;2
  95. Nazeri Tahrudi, M., Khalili, K., & Ahmadi, F. (2016). Spatial and regional analysis of precipitation trend over Iran in the last half of century. Water and Soil30(2), 643-654. http://doi.org/10.22067/JSW.V30I2.39130 [In Persian]
  96. Nouri, M., & Homaee, M. (2020). Drought trend, frequency and extremity across a wide range of climates over Iran. Meteorological Applications27(2), p.e1899. https://doi.org/10.1002/met.1899
  97. Paul, B.K. (1998). Coping mechanisms practised by drought victims (1994/5) in North Bengal, Bangladesh. Applied geography, 18(4), 355-373. https://doi.org/10.1016/S0143-6228(98)00026-5
  98. Piri, H., Abbaszadeh, M., Rahdari, V. & Maleki, S., 2013. Comparative evaluation of four meteorological drought indices using the cluster analysis (Case study: Sistan and Baluchestan). Water Resources Engineering, 6(Vol6/No17/Summer 2013), 25-36. https://doi.org/20.1001.1.20086377.1392.6.17.3.1 [In Persian].
  99. Pour, S.H., Wahab, A.K.A., & Shahid, S. (2020). Spatiotemporal changes in precipitation indicators related to bioclimate in Iran. Theoretical and Applied Climatology141, 99-115. https://doi.org/10.1007/s00704-020-03192-6
  100. Quiring, S.M., & Papakryiakou, T.N. (2003). An evaluation of agricultural drought indices for the Canadian prairies. Agricultural and forest meteorology, 118(1-2), pp.49-62. https://doi.org/10.1016/S0168-1923(03)00072-8
  101. Ramos, M.C. (2001). Divisive and hierarchical clustering techniques to analyse variability of rainfall distribution patterns in a Mediterranean region. Atmospheric Research57(2), 123-138. https://doi.org/10.1016/S0169-8095(01)00065-5
  102. Raziei, T. (2017). Identification of precipitation regimes of Iran using multivariate methods. Journal of the Earth and Space Physics, 43(3), 673-695. https://doi: 10.22059/jesphys.2017.60290. [In Persian].
  103. Ropelewski, C.F., & Halpert, M.S. (1987). Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly weather review, 115(8), 1606-1626. https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2
  104. Ropelewski, C.F. and Halpert, M.S. (1989). Precipitation patterns associated with the high index phase of the Southern Oscillation. Journal of climate, pp.268-284.
  105. Roradeh, H., Ghasemi, J., Yousefi, Y. and Ghasemi, Z. (2019). Clustering the rainfall of Iran with using new approach based on Singular Value Decomposition Mapping and Fuzzy C-Means Clustering. Geographical Planning of Space9(31), 113-124. https://doi:10.30488/gps.2019.90113. [In Persian].
  106. Rostamian, R., Eslamian, S. and Farzaneh, M.R. (2013). Application of standardised precipitation index for predicting meteorological drought intensity in Beheshtabad watershed, central Iran. International Journal of Hydrology Science and Technology3(1), 63-76. https://doi.org/10.1504/IJHST.2013.055233
  107. Sadeghinia, A., Nazaripour, H., & Rafati, S. (2023). Changes in Classified Precipitation in Iran. Bulletin of Geography. Physical Geography Series, (25), 23-38. http://doi.org/10.12775/bgeo-2023-0007
  108. salahi B, faridpour M. 2016. Spatial analysis of climatic drought in North West of Iran using spatial autocorrelation statistics. Journal of Spatial Analysis Environmental Hazards, 3 (3), 1-20. [In Persian].
  109. Sert, S.A., Bagci, H., & Yazici, A. (2015). MOFCA: multi-objective fuzzy clustering algorithm for wireless sensor networks. Applied Soft Computing, 30, 151-165. https://doi.org/10.1016/j.asoc.2014.11.063.
  110. Sharafi, L., Zarafshani, K., Keshavarz, M., Azadi, H., & Van Passel, S. (2020). Drought risk assessment: Towards drought early warning system and sustainable environment in western Iran. Ecological Indicators114, 106276. https://doi.org/10.1016/j.ecolind.2020.106276
  111. Somorowska, U. (2017). Soil water storage in Poland over the years 2000-2015 in response to precipitation variability as retrieved from GLDAS Noah simulations. Geographia Polonica90(1), 53-64. https://doi.org/10.7163/GPol.0078
  112. Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D., & Miskus, D. (2002). The drought monitor. Bulletin of the American Meteorological Society, 83(8), 1181-1190. https://doi.org/10.1175/1520-0477-83.8.1181
  113. Szabó, S., Szopos, N.M., Bertalan-Balázs, B., László, E., Milošević, D.D., Conoscenti, C., & Lázár, I. (2019). Geospatial analysis of drought tendencies in the Carpathians as reflected in a 50-year time series. Hungarian Geographical Bulletin68(3), 269-282.  https://doi.org/10.15201/hungeobull.68.3.5
  114. Tabari, H., Abghari, H., & Hosseinzadeh Talaee, P. (2012). Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrological Processes26(22), 3351-3361. https://doi.org/10.1002/hyp.8460
  115. Torabi Poudeh, H., Izadjoo, F., & Hamezade, P. (2018). 'The trend changing analysis of total and effective rainfall in ‎Iran'. Iranian Water Researches Journal, 12(4), 1-10. [In Persian]
  116. Van Rooy, M. P. (1965). A rainfall anomaly index independent of time and space. Notos, 14, 43-48.
  117. Vicente‐Serrano, S.M., & Beguería‐Portugués, S. (2003). Estimating extreme dry‐spell risk in the middle Ebro valley (northeastern Spain): a comparative analysis of partial duration series with a general Pareto distribution and annual maxima series with a Gumbel distribution. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(9), 1103-1118. https://doi.org/10.1002/joc.934
  118. Wilhite, D.A., & Svoboda, M.D. (2000). Drought early warning systems in the context of drought preparedness and mitigation. Early warning systems for drought preparedness and drought management, pp.1-21.
  119. Xie, P,. Lei, X., Zhang, Y., Wang, M., Han, I., Chen, Q. (2018). Cluster analysis of drought variation and its mutation characteristics in Xinjiang province, during 1961–2015. Hydrology Research. 49 (4): 1016–1027. https://doi.org/10.2166/nh.2018.105
  120. Yan, N., Tian, F., Wu, B., Zhu, W., & Yu, M. (2018). Spatiotemporal analysis of actual evapotranspiration and its causes in the Hai Basin. Remote Sensing10(2), 332. https://doi.org/10.3390/rs10020332
  121. Yoo, J., Kwon, H. H., Kim, Tae-Woong. A., & Jae-Hyun. (2012). Drought frequency analysis using cluster analysis and bivariate probability distribution.  Journal of Hydrology, 420-421, 102-111. https://doi.org/10.1016/j.jhydrol.2011.11.046
  122. Zarei, A.R., & Masoudi, M. (2019). Trend assessment of climate changes in Iran. EQA-International Journal of Environmental Quality34, 1-16. https://doi.org/10.6092/issn.2281-4485/8202
  123. Zarei, A.R. (2018). Evaluation of drought condition in arid and semi-arid regions, using RDI index. Water Resources Management32, 1689-1711. https://doi.org/10.1007/s11269-017-1898-9
  124. Zarei, A.R., Moghimi, M.M., & Mahmoudi, M.R. (2016). Analysis of changes in spatial pattern of drought using RDI index in south of Iran. Water resources management30, 3723-3743. https://doi.org/10.1007/s11269-016-1380-0