ارزیابی حساسیت زمین‌لغزش با استفاده از مدل‌های ویکور و میانگین وزنی مرتب‌شده مطالعه موردی شهرستان سوادکوه

نوع مقاله : مقاله کامل

نویسندگان

گروه سیستم اطلاعات مکانی، دانشکده مهندسی نقشه‌برداری و اطلاعات مکانی، دانشگاه تهران، تهران، ایران

10.22059/jphgr.2024.366517.1007792

چکیده

زمین‌لغزش می‌تواند به سبب فعالیت‌های انسانی و عوامل محیطی رخ دهد که اثرات مخربی در پی دارد. رسیدن به یک پهنه‌بندی از خطر وقوع این پدیده می‌تواند به اتخاذ تصمیم‌هایی در جهت کاهش تلفات و خسارات ناشی از این پدیده کمک کند. در این مطالعه با هدف تهیه یک نقشه خطرپذیری رخداد زمین‌لغزش، عوامل طبیعی مختلفی شامل ارتفاع، شیب، جهت شیب، بارش، جنس خاک، فاصله از آبراهه و فاصله از گسل به کار گرفته‌شده‌اند. همچنین از اطلاعات تاریخی رخداد زلزله به‌منظور برآورد میزان اثر هر معیار و زیر معیار استفاده‌شده است که به این منظور با به‌کارگیری روش نسبت فراوانی (FR)، میزان اثر زیرمعیارها و با استفاده از روش آنتروپی شانون، وزن هر معیار محاسبه‌شده است. همچنین پس از محاسبه وزن معیارها و زیرمعیارها از روش‌های ویکور (VIKOR) و میانگین وزنی مرتب‌شده (OWA) برای تهیه نقشه خطرپذیری استفاده‌شده است. بر اساس نتایج به‌دست‌آمده، معیار جنس خاک با مقدار وزن 33/0 دارای بیشترین وزن مؤثر بوده است. برای مقایسه روش‌های مختلف از معیار FR استفاده‌شده است که بر اساس نتایج به‌دست‌آمده روش OWA به ازای مقادیر α برابر با 10 و 2 نتایج بهتری داشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Landslide Susceptibility Assessment using VIKOR and Ordered Weighted Averaging Methods A Case Study of Savadkuh County

نویسندگان [English]

  • moslem Dehnavi Eelagh
  • Parham Pahlavani
School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
چکیده [English]

ABSTRACT
Landslides can occur due to human activities and environmental factors that have destructive effects. Reaching zoning of the risk of this phenomenon can help to make decisions to reduce losses and damages caused by this phenomenon. In this study, to prepare a landslide risk map, various natural factors including height, slope, slope direction, precipitation, soil type, distance from the waterway and distance from the fault have been used. Also, the historical information on the earthquake occurrence has been used to estimate the effect of each criterion and sub-criteria. For this purpose, by using the frequency ratio (FR) method, the impact of sub-criteria and by using Shannon's entropy method, the weight of each criterion has been calculated. Also, after calculating the weights of criteria and sub-criteria, VIKOR and weighted average (OWA) methods have been used to prepare a risk map. Based on the obtained results, the criterion of soil type with a weight value of 0.33 has the most effective weight. To compare different methods, the FR criterion has been used, which based on the results obtained, the OWA method has better results for α values ​​equal to 10 and 2.
Extended Abstract
Introduction
Landslides or range movements are natural phenomena that can have irreparable effects. The intervention of human activities such as road construction, tunnel digging, tree cutting, and mining activities can aggravate this phenomenon. Of course, environmental factors such as heavy rains, earthquakes, and lowering the underground water level can cause this phenomenon. Landslides, by destroying the people's public property and environment, make the continuation of human life a severe problem. It is very important to identify the prone areas and prepare hazard maps, followed by planning to manage the conditions after the landslide event, and it helps the planners to make the necessary preparations before any disaster occurs. To consider In this study, the VIKOR method is used as one of the MCDM methods. Based on the review of previous studies, this method has not been used in other studies in accordance with the subject of this study. Also, the criteria used in this study include elevation, slope, slope direction, precipitation, soil type, distance from the fault, distance from the river, and distance from waterways, which are weighted by Shannon's entropy method and Frequency ratio.
 
Methodology
Shannon entropy- Frequency Ratio(FR): This method is widely used in multi-criteria decision-making, and considering that it can determine the importance of the criteria without needing an expert's opinion and calculate the weight for each criterion, it is of interest. Also, this method can be useful when there is a lot of inconsistency between experts' opinions. First, the probability density (E_ij) of landslide occurrence for each class of the desired factor is calculated. The FR is equivalent to the ratio of the relative percentage of the number of relevant events in a certain class to the relative percentage of the area of the class in the studied area. After that, the entropy value is calculated. Also, in the next step, the information value should be calculated. The information value shows the importance of the relevant factor in creating the event, and the larger its value, the higher the importance of that factor. Finally, to reach the weight of each factor, the information value must be multiplied by the value of the average FR.
VIKOR: This method ranks the options by calculating how close each option is to the ideal solution, which receives the decision matrix and the criteria's weight vector as input. In the first step, the data should be normalized. After normalization, the values of the decision matrix must be multiplied by the weight of each criterion to reach the value of the weighted normalized matrix. In the next step, partial agreement with the ideal answer and partial disagreement with the ideal solution (should be calculated. This method uses a linear relationship in terms of and to evaluate and ranking options.
OWA: The OWA method is one of the information integration methods based on priority weighting. The information integration is given a weight based on the priority of the information source among other information sources. Two sets of weights can be included in OWA. The set of weights of the criteria that were calculated in this study using the Shannon entropy-frequency ratio method. The weight of the criteria specifically determines the importance of each information source. The set of order weights is specified for each priority. The order weight is determined according to the rank and position of the information source compared to other information sources.
 
Results and Discussion
The layers of information used in this study include slope layer, aspect, elevation, distance from the fault, distance from the rivers, soil type, and precipitation. This study was conducted in Savadkuh county of Mazandaran province. Based on the values obtained, the criteria of soil type and elevation with weight weights of 0.33 and 0.23, respectively, have the greatest effect in causing landslides. Also, the criterion of distance from the rivers with a weight of 0.01 has had the least effect.
Among the different soil types, the Malisol (mol) type has the greatest effect in causing landslides with an impact of 0.68% compared to other types, which is due to the fact that this soil is always moist and soft, It has a high potential in creating landslides. Also, for the sub-criteria related to elevation, the highest number of landslides occurred at elevations of 100 to 1200 meters above sea level, which are actually hillsides. This phenomenon has been less at higher altitudes, which can be attributed to the type of soil at higher altitudes, mostly rocks and stones. According to the obtained map, 72.08% of the points were placed in very high and high-risk areas, and its rate was 10.8% for low and very low-risk areas. Also, 19.82% of the points are located in medium-risk areas, which is a significant amount, and it seems that other factors can be considered in determining the event's potential.
 
Conclusion
After calculating the weight of the criteria and sub-criteria, VIKOR and OWA methods were used to combine different layers. As a result, eight landslide risk zoning maps were obtained. The maps obtained from the OWA method for α values equal to 10 and 2 have the best results based on the DR criteria. Based on the obtained maps, the northern regions of the region have a higher potential for this phenomenon to occur, and the soil type of the northern regions and lower altitudes (domains) have increased the potential for this phenomenon to occur. Also, agricultural activities increase the probability of occurrence, which is higher in the northern regions. Based on the obtained results, it can be said that the OWA method, which produces a wide range of outputs, can be a suitable method for reducing the issue of uncertainty because of different values of α and comparing the obtained maps. In reality, you can choose the best result. Therefore, one of the advantages of this method over the VIKOR method is the reduction of uncertainty.
Also, based on the results obtained from this study, the high number of points in each class cannot be used as a measure of accuracy alone because, for example, in the OWA method with an α value equal to zero, more than 95% of the points are in the high-risk class. At the same time, more than 87% of the region's area was placed in this class, which caused more points to be placed. The DR method was a criterion for comparing different ways by considering the relative number of points and the relative area of the corresponding class. The maps obtained from this study can be used to improve road safety and make better decisions in the design of roads, railways, and power transmission lines.
 
Funding
There is no funding support.
 
Authors’ Contribution
All of the authors approved the content of the manuscript and agreed on all aspects of the work.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Landslide
  • Shannon entropy
  • Frequency Ratio(FR)
  • Ordered Weighted Averaging (OWA)
  • VIKOR
  1. اطنابی، سید محمدرضا؛ نیازمردی، سعید و علی‌عباسپور، رحیم. (1400). روشی جدید برمبنای ترکیب روش‌های آماری برای افزایش دقت نقشه‌های حساسیت به مخاطرات زمین‌لغزش (مطالعه موردی: استان مازندران). مدیریت مخاطرات محیطی، 8(2)، 117-99. doi:10.22059/JHSCI.2021.319366.629
  2. امین‌عطائی، رضا؛ اخوان، سحر و نظامیوند چگینی، امیر هوشنگ. (1398). پهنه‌بندی استعداد وقوع زمین‌لغزش در منطقه رودبار به روش LNSF. فصلنامه اطلاعات جغرافیایی «سپهر»، 28(112)، 33-19. doi:10.22131/sepehr.2020.38605
  3. انتظاری، مژگان و جلیلیان، طاهره. (1398). اولویت‌بندی حوضه‌های آبخیز از نظر ریسک خطر وقوع زمین‌لغزش در استان کرمانشاه بر اساس مدل تصمیم‌گیری چندمعیاره (ELECTRE-1). هیدروژئومورفولوژی، 6(18)، 38-19. doi:20.1001.1.23833254.1398.6.18.2.1
  4. بابلی مؤخر، حمید؛ تقیان، علیرضا و شیرانی، کوروش. (1397). به‌کارگیری شاخص‌های مورفومتری در بهینه‌سازی نقشه‌های پهنه‌بندی حساسیت زمین‌لغزش با استفاده از مدل‌های احتمالاتی. پژوهش‌های جغرافیای طبیعی، 50(4)، 773-747. doi:10.22059/JPHGR.2018.259803.1007234
  5. بلواسی، ایمانعلی؛ رضائی مقدم، محمدحسین؛ نیکجو، محمدرضا و ولیزاده کامران، خلیل. (1394). مقایسه مدل شبکه عصبی مصنوعی با فرایند تحلیل سلسله‌مراتبی در ارزیابی خطر زمین‌لغزش. دانش مخاطرات، 2(2)، 250-225. doi:10.22059/JHSCI.2015.55063
  6. بهمنی، سیران؛ زنگنه‌تبار، زهرا؛ محمدی، سارا و مطاعی، سارا. (1400). شناسایی و پهنه‌بندی مناطق مستعد زمین‌لغزش با استفاده از روش شیءگرا و تحلیل شبکه (ANP) (مطالعه موردی: حوضه آبریز شاهرود چایی شهرستان خلخال). جغرافیا و مخاطرات محیطی، 10(3)، 39-59. doi:10.22067/GEOEH.2021.67924.1006
  7. جاویدان، نرگس؛ کاویان، عطاالله؛ رجبی، سجاد، پورقاسمی، حمیدرضا؛ کنوشنتی، کریستین و جعفریان، زینب. (1401). شناسایی مهم‌ترین عوامل پیش‌بینی کننده در تهیه نقشه حساسیت‌پذیری زمین‌لغزش با استفاده از مدل بیشینه آنتروپی. مهندسی و مدیریت آبخیز، 14(3)، 346-332. doi:20.1001.1.22519300.1401.14.3.4.9
  8. حجازی، اسدالله؛ رضایی مقدم، محمدحسین و ناصری، عدنان. (1399). پهنه‌بندی خطر زمین‌لغزش با استفاده از مدل‌های شبکه عصبی مصنوعی و تاپسیس در پایین‌دست سد سنندج. هیدروژئومورفولوژی، 7(24)، 82-65. doi:20.1001.1.23833254.1399.7.24.4.2
  9. دهنوی ئیلاق، مسلم و پهلوانی، پرهام. (1402). تهیه نقشه خطرپذیری آلاینده PM2.5 شهر تهران با استفاده از الگوریتم میانگین وزنی مرتب‌شده. مدیریت مخاطرات محیطی، 10(1)، 28-15. doi:10.22059/JHSCI.2023.355953.767
  10. روستائی، شهرام؛ خدائی قشلاق، لیلا و خدائی قشلاق، فاطمه. (1393). ارزیابی روش‌های تحلیل شبکه (ANP) و تحلیل چندمعیارة مکانی در بررسی پتانسیل وقوع زمین‌لغزش در محدودة محور و مخزن سدها (مطالعة موردی: سد قلعه‌چای). پژوهش‌های جغرافیای طبیعی، 46(4)، 508-495. doi:10.22059/JPHGR.2014.53000
  11. سدیدی، جواد و مالکی، رضا. (1401). مقایسه الگوریتم‌های ماشین بردار پشتیبان، جنگل تصادفی و رگرسیون لجستیک در پهنه‌بندی خطر زمین‌لغزش در جاده مهاباد سردشت. کاربرد سنجش از دور و GIS در علوم محیطی، 2(4)، 100-81. doi:10.22034/rsgi.2022.15839
  12. شریفی پیچون، محمد؛ شیرانی، کوروش و شیرانی، مائده. (1400). اولویت‌بندی عوامل مؤثر بر وقوع زمین‌لغزش و پهنه‌بندی حساسیت آن با استفاده از روش رگرسیون چندمتغیره خطی مطالعه موردی: حوضه آبریز وهرگان-غرب استان اصفهان. هیدروژئومورفولوژی، 8(26)، 287-247. doi:10.1016/j.catena.2011.01.014
  13. فلاح ززولی، محمد؛ وفایی نژاد، علیرضا؛ آل شیخ، علی‌اصغر و مدیری، مهدی. (1398). پهنه‌بندی احتمال وقوع زمین‌لغزش با استفاده از مدل‌های آنتروپی شانون و ارزش اطلاعات در محیط GIS مطالعه موردی: بخش رودبار الموت شرقی- استان قزوین. فصلنامه اطلاعات جغرافیایی «سپهر»، 28(112)، 136-123. doi:20.1001.1.25883860.1398.28.112.8.1
  14. محرمی، میثم؛ ارگانی، میثم. (1399). پتانسیل‌یابی مناطق مستعد زمین‌لغزش با استفاده از مدل FBWM(مطالعة موردی: شهر تبریز). آمایش سرزمین، 12(2)، 593-571. doi:10.22059/JTCP.2020.295295.670058
  15. نظری بیاتیانی، فرنگیس؛ جعفربگلو، منصور؛ محمدخان، شیرین؛ مقصودی، مهران. (1401). پهنه‌بندی خطر وقوع زمین‌لغزش در منطقه کلور با استفاده از مدل ترکیبی قضیه بیز-ANP. جغرافیا و مخاطرات محیطی، 11(2)، 21-1. doi:10.22067/GEOEH.2021.69988.1048
  16. Aminataei, R., Akhavan, S., & Nezamivand chegini, A. (2020). Zoning of landslide susceptibility in Rudbar area with LNSF method. Quarterly of Geographical Data (SEPEHR), 28(112), 19-33. doi:10.22131/sepehr.2020.38605 [in Persian]
  17. Atyabi, S. M., Niazmardi, S., & Ali Abbaspour, R. (2021). A novel method based on combing statistical methods for improving the accuracy of landslide susceptibility maps (case study: Mazandaran province). Environmental Management Hazards, 8(2), 99-117. doi:10.22059/JHSCI.2021.319366.629 [in Persian]
  18. Baboli Moakher, H., Taghian, A., & Shirani, K. (2018). Application of Morphometric Indices in Optimization of Landslide Susceptibility Zonation Using Probabilistic Methods. Physical Geography Research Quarterly, 50(4), 747-773. doi:10.22059/JPHGR.2018.259803.1007234 [in Persian]
  19. Bahmani, S., Zangneh Tabar, Z., Mohammadi, S., & Mataee, S. (2021). Identification and zoning of landslide prone areas using object-oriented method and network analysis (ANP) (Case study: Shahroudchai catchment area of Khalkhal city). Journal of Geography and Environmental Hazards, 10(3), 39-59. doi:10.22067/GEOEH.2021.67924.1006 [in Persian]
  20. Balvasi, I., Rezaei Moghaddam, M. H., Nikjo, M. R., & Valizadeh Kamran, K. (2015). Comparison of Artificial Neural Network Model With Analytical Hierarchy Process In Landslide Hazard Assessment Using Geographic Information Systems. Environmental Management Hazards, 2(2), 225-250. doi:10.22059/JHSCI.2015.55063 [in Persian]
  21. Dwivedi, P. P., & Sharma, D. K. (2022). Application of Shannon entropy and CoCoSo methods in selection of the most appropriate engineering sustainability components. Cleaner Materials, 5, 100118. doi:10.1016/j.clema.2022.100118
  22. Dehnavi Eelagh, M., & Pahlavani, P. (2023). Preparation of PM2. 5 Pollution Hazard Map of Tehran Using Ordered Weighted Averaging Algorithm. Environmental Management Hazards, 10(1), 15-28. doi:10.22059/JHSCI.2023.355953.767 [in Persian]
  23. Entezari, M., & Jalilian, T. (2019). Ranking Sub Watersheds Based on Landside Hazard in Kermanshah Province (Iran) Using ELECTRE I. Hydrogeomorphology, 6(18), 19-38. doi:20.1001.1.23833254.1398.6.18.2.1 [in Persian]
  24. Fallah Zazuli, M., Vafaei Nezhad, A., Alesheikh, A. A., Modiri, M., & Aghamohammadi, H. (2020). Landslide hazard zoning using Shannon Entropy and Information Value models in GIS environment - Case study: East Rudbar-e Alamut District-Qazvin Province. Quarterly of Geographical Data (SEPEHR), 28(112), 123-136. doi:20.1001.1.25883860.1398.28.112.8.1 [in Persian]
  25. Hattanji, T., & Moriwaki, H. (2009). Morphometric analysis of relic landslides using detailed landslide distribution maps: Implications for forecasting travel distance of future landslides. Geomorphology, 103(3), 447-454. doi:10.1016/j.geomorph.2008.07.009
  26. Hejazi, A., Rezaeimoghaddam, M., & Naseri, A. (2020). Landslide hazard zoning using artificial neural network models and TOPSIS downstream of Sanandaj Dam. Hydrogeomorphology, 7(24), 65-82. doi:20.1001.1.23833254.1399.7.24.4.2 [in Persian]
  27. Javidan, N., Kavian, A., Rajabi, S., Pourghasemi, H., Conoscenti, C., & Jafarian, Z. (2022). Identification the most important predictors in landslide susceptibility mapping using Maximum Entropy Model. Watershed Engineering and Management, 14(3), 332-346. doi:20.1001.1.22519300.1401.14.3.4.9 [in Persian]
  28. Moharrami, M., & Argany, M. (2020). Evaluating the Potential of Landslide Susceptible Areas Using FBWM Model: A Case Study of Tabriz City. Town and Country Planning, 12(2), 571-593. doi:10.22059/JTCP.2020.295295.670058 [in Persian]
  29. Naghibi, S. A., Pourghasemi, H. R., Pourtaghi, Z. S., & Rezaei, A. (2015). Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Science Informatics, 8, 171-186. doi:10.1007/s12145-014-0145-7
  30. Nazari bayatiani, F., Jafar Beglou, M., Mohammad Khan, S., & Maghsoudi, M. (2022). Landslide Hazard Zonation in Kolur Region Using Bayes' Theorem-ANP Hybrid Model. Journal of Geography and Environmental Hazards, 11(2), 1-21. doi:10.22067/GEOEH.2021.69988.1048 [in Persian]
  31. Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Faculty of civil engineering, Belgrade, 2(1), 5-21.
  32. Roostaei, S., Khodaei Geshlag, L., & Khodaei Geshlag, F. (2014). Assessment of Analysis Network Process and Heuristic Method in the Investigation of Landslide Potential in the Axis Range and Reservoir Dams (Case Study: Ghalea Chai Dam). Physical Geography Research, 46(4), 495-508. doi:10.22059/JPHGR.2014.53000 [in Persian]
  33. Sadidi, J., & Maliki, R. (2022). Using machine learning-based models for landslide susceptibility mapping in Mahabad-Sardasht road. Remote Sensing and GIS Applications in Environmental Sciences, 2(4), 100-181. doi:10.22034/rsgi.2022.15839 [in Persian]
  34. Shannon, C. E. (1948). A note on the concept of entropy. Bell System Tech. J, 27(3), 379-423.
  35. Sharifi Paichoon, M., Shirani, K., & Shirani, M. (2021). Prioritization of Factors Affecting the Occurrence of Landslides and Zoning Its Sensitivity Using Multiple Linear Regression Case Study: Vahargan Catchment-west of Isfahan Province. Hydrogeomorphology, 8(26), 163-139. doi:10.22034/hyd.2021.12902 [in Persian]
  36.  Yalcin, A., Reis, S., Aydinoglu, A., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85(3), 274-287. doi:10.1016/j.catena.2011.01.014