تهیه نقشه پتانسیل خطر وقوع سیل با استفاده از روش آماری EBF مطالعه موردی: حوضه آبریز آذرشهر چای

نوع مقاله : مقاله کامل

نویسندگان

گروه ژئوموفولوژی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

10.22059/jphgr.2024.374985.1007825

چکیده

حوضه آبریز آذرشهر چای واقع در دامنه غربی کوهستان سهند، یکی از حوضه‌های مستعد وقوع سیل است که همه‌ساله با شروع بارش‌های بهاری شاهد جاری شدن آب در دره‌ها وقوع سیل در این حوضه می‌باشد. لذا بررسی و شناسایی مناطق مستعد سیل، گامی اساسی جهت مدیریت و کاهش خسارات سیل در این حوضه می‌باشد. هدف اصلی این پژوهش تعیین اثربخشی روش آماری دو متغیره EBF (عملکرد شاهد- باور) با استفاده از متغیرهای مؤثر در وقوع سیل و سیستم اطلاعات جغرافیایی (GIS) است. جهت دستیابی به این هدف ابتدا موقعیت 82 نقطه سیل گیر تهیه گردید که از این تعداد به‌طور تصادفی 57 نقطه جهت آموزش مدل و 25 نقطه جهت اعتبارسنجی استفاده گردید. در گام بعد 14 پارامتر مؤثر در وقوع سیل شامل ارتفاع، شیب، جهت شیب، انحنای شیب، لیتولوژی، جنس خاک، فاصله از آبراهه، فاصله از جاده، تراکم رودخانه، شاخص رطوبت توپوگرافی (TWI)، بارش، شاخص تفاضل نرمال شده پوشش گیاهی (NDVI)، کاربری اراضی و شاخص توان آبراهه (SPI) جهت تهیه نقشه خطر وقوع سیل انتخاب شدند. نتایج بررسی پارامترها نشان داد که طبقات ارتفاعی 1500-1289 متر، مناطق دارای شیب 15-0 درجه، جهت شیب مسطح، مناطق دارای شیب‌هایی با انحنای مقعر، مناطق نزدیک آبراهه‌ها و جاده‌ها از پتانسیل بالایی جهت وقوع سیل برخوردارند. ارزیابی دقت مدل تحقیق با استفاده از منحنی ROC و سطح زیر منحنی (AUC) نشان داد که مدل EBF با مقدار 973/0 عملکرد عالی در تهیه نقشه پتانسیل خطر وقوع سیل در منطقه موردمطالعه داشته است. لذا نقشه تهیه‌شده می‌تواند یک چهارچوب مرجع برای بهبود و کاهش خطرات سیل برای برنامه‌ریزان همراه با فعالیت‌های مدیریتی خطر سیل در این حوضه باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Preparation of Flood Hazard Potential Map using EBF Statistical Method: The Case Study of Azarshahr Chai Basin

نویسندگان [English]

  • Mohammad Hossein Rezaei Moghaddam
  • Davood mokhtari
  • Tohid Rahimpour
  • vahideh taghizadeh
Department of Geomorphology, University of Tabriz, Tabriz, Iran
چکیده [English]

ABSTRACT
Azarshahrchai basin, located on the western slope of Sahand Mountain, is one of the flood-prone basins that every year, with the onset of spring rains, water flows in the valleys and floods occur in this basin. Thus, investigating and identifying flood-prone areas is a fundamental step to managing and reducing flood damage in this basin. The main goal of this research is to determine the effectiveness of the two-variable statistical method EBF (witness-belief function) by using the effective variables in flood occurrence and geographic information systems (GIS). In order to achieve this goal, 82 floodgates were first prepared, of which 57 points were randomly used for model training and 25 points for validation. In the next step, 14 parameters effective in the occurrence of floods, including elevation, slope, aspect, slope curvature, distance to river, distance to road, river density, TWI (Topographic Wetness Index), lithology, soil type, Stream Power Index (SPI), rainfall, Land-use, and NDVI were selected to prepare flood risk map. The results of the analysis of the parameters showed that the height classes of 1289-1500 meters, areas with a slope of 0-15 degrees, flat slope direction, areas with slopes with concave curvature, and areas near waterways and roads have a high potential for flooding. The evaluation of the accuracy of the research model using the ROC curve and the area under the curve (AUC) showed that the EBF model, with a value of 0.973, had an excellent performance in preparing the flood risk potential map in the study area. Therefore, the prepared map can be a reference framework for planners to improve and reduce flood risks along with flood risk management activities in this basin
Extended abstract
Introduction
Floods are the most common natural hazards that occur all over the world and are the product of runoff production and confluence processes in watersheds. Its formation process is complex and mainly influenced by precipitation, vegetation, topography, and soil factors. It is difficult to define a flood. In general, a flood is a relatively large flow that exceeds the capacity of the river channel. While normal currents occur within the channel, periodic strong currents pass over the banks of the channel and spill over the surrounding flood plains. Considering that floods are natural phenomena, and although they cannot be completely controlled, their risks can be minimized. Flood risk reduction planning requires mapping, modeling and predicting flood events at different spatial and temporal scales. Many researchers have considered flood risk mapping as one of the most efficient tools for prevention and mitigation. A flood risk map visualizes the spatial distribution of flood risk, and flood vulnerability assessment is recognized as a preventive measure for risk management and planning and helps planners and decision-makers identify highly vulnerable areas or communities.
 
Materials and methods
In this research, among the 14 factors of elevation, slope, aspect, slope curvature, distance to river, distance to road, river density, TWI (Topographic Wetness Index), lithology, soil type, Stream Power Index (SPI), rainfall, Land-use, and NDVI has been used to investigate the watershed in terms of flood potential. Using LANDSAT8 satellite images of the OLI sensor, the position of 82 flood points in the Azarshahrchai catchment area was determined; 57 flood points were randomly used for training data and 25 points for validation data. Then, using a digital elevation model (DEM) with a spatial resolution of 12.5 meters and GIS and ENVI software, the required information layers were extracted and using the EBF model, the basin was zoned in terms of flood risk and final maps were extracted. The EBF model or witness-belief function, which is also called Dempster-Shafer theory, includes 4 functions degree of confidence (BEL), uncertainty (DIS), uncertainty (UNC) and degree of plausibility (PLS), and its values are between -1 0 and its greatest advantage is the flexibility resulting from accepting uncertainty and combining many sources of belief. ROC curve is used to evaluate the accuracy of the model. A popular method for visualizing the discriminative accuracy of binary classification models is the area under the curve (AUC), which is a common measure of its accuracy.
 
Results and discussion
Elevation: The highest BEL or degree of confidence was recorded for the heights of 1289-1500, with a number of 0.736, which indicates the high probability of flooding in these areas. Altitudes of 1500-2000 and 2000-2500 have a lower probability of flooding than heights of less than 1500 meters, with confidence levels of 0.236 and 0.027, respectively. Confidence level 0 for heights higher than 2500 meters depicts the impossibility of flooding in these areas.
Slope: Areas with a slope of 0-15 degrees with a confidence level of 0.865 and slopes above 30 degrees with a confidence level of 0 have the highest and lowest probability of flooding and injury from this hazard, respectively.
Aspect: The highest degree of confidence was recorded for flat slopes with a value of 0.228, for east-facing slopes with a value of 0.132, for northwest slopes with a value of 0.131, and for a northeast-facing slope with a value of 0.115.
Lithology: The highest degree of confidence was recorded for the lake salt formation with a value of 0.388, deposits of high-level pediments and valley terraces with a value of 0.220, and semi-volcanic rocks from rhyolite to rhyodacite with a value of 0.186. These formations with a high degree of certainty have the possibility of aggravating the risk of flooding.
Soil type: The degree of reliability of Aridosol soil with a value of 0.768 is very high compared to the other two types of soil in the basin. Aridosols are followed by inceptisols and stone outcrops with confidence levels of 0.135 and 0.096, respectively.
Distance to the river: 200 meters from the river, one of the basin's most vulnerable areas, with a confidence level of 0.564. Distances of more than 800 meters from rivers with a confidence level of 0.205 have taken the second rank of vulnerable areas in this index.
Distance to road: the highest level of confidence with a number of 0.319 is assigned to distances of 0-200 meters from roads and the lowest level of confidence with a value of 0.069 is assigned to distances of more than 800 meters. Distances 200-400, 600-800 and 400-600 are next in terms of flood vulnerability with confidence levels of 0.296, 0.168 and 0.146, respectively.
River density: In the sections where the river density is more than 0.8 square kilometers per square kilometer, the highest degree of confidence has been recorded with a value of 0.321. After that, in the places where the density of the river is 0.4-0.2 square kilometers per square kilometer, the lowest level of confidence with the number 0.045 has been assigned to it.
Topographic wetness index: In this basin, TWI 7-10-94, with the highest score of 0.400, is the most vulnerable area against floods. The regions with TWI 3.7-2.5, with a confidence level of 0.032, are the least vulnerable to flood risk.
Precipitation: The areas with more than 500 mm of rainfall, with a confidence level of 0.652, and the areas with 273-330 mm of rainfall are the most vulnerable areas against floods.
The normalized index of vegetation difference (NDVI): the areas with high vegetation difference with a confidence level of 0.597 and the areas without vegetation with a confidence value of 0 have the highest and lowest vulnerability.
Land use: From the point of view of riverbed land use, with a confidence value of 0.680, garden agriculture with a confidence level of 0.145, water-agriculture with a confidence value of 0.095, residential areas with a confidence value of 0.042, agriculture-garden with a confidence level of 0.027, rainfed areas with a confidence level of 0.006, and pasture use with a confidence level of 0.001, these areas are highly vulnerable to flood risk.
SPI: The most vulnerable areas in this index are the river's power in distances of 0-1500 meters, with a confidence level of 0.437.
ROC curve was used for the overall evaluation of the model. which with a number of 0.973 indicates the good performance of this model in the basin in terms of flood vulnerability.
Conclusion
In this research, using the EBF model, flood-sensitive areas were zoned based on 14 factors affecting their occurrence, using 57 flood-prone and 25 flood-free points. Based on the results obtained from this research, 12.7% of the basin is in the high class, 20.6% is in the very high vulnerability class, and the height factors are 1289-1500 meters, areas with a slope of 0-15 degrees, flat slope direction, Areas with slopes with concave curvature, flat slopes, lake salt formation, Aridosol soil, distances of 200 meters from rivers and roads, river density in areas greater than 0.8 square kilometers per square kilometer, Topographic Wetness Index (TWI) 10.94 - 7 areas with Precipitation more than 500 mm, Normalized Difference Vegetation Index (NDVI), River Bed, Erosion and Stream Power Index (SPI) at distances of 1500 kilometers from the river with weights of 0.736, 0.865, 0.228, and 703. 0, 0.388, 0.768, 0.564, 0.319, 0.321, 0.400, 0.652, 0.597, 0.680, and 0.432 are the most vulnerable areas of the basin and need more attention. The evaluation of the obtained result using the ROC curve with a value of 0.973 depicts the good performance of this model for basin zoning. The prepared flood susceptibility map of the Azarshahrchai watershed provides important information on vulnerable areas and can be a reference framework for planners to improve and reduce flood risks along with flood risk management activities in this basin. Therefore, in order to reduce the damage caused by floods in the coming years, careful planning should be done for high-risk areas.
 
Funding
There is no funding support.
 
Authors’ Contribution
All of the authors approved the content of the manuscript and agreed on all aspects of the work.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Zoning
  • Azarshahrchai Basin Area
  • EBF Method
  • Flood
  1. آزادطلب، مهناز، شهابی، هیمن؛ شیرزادی، عطااله؛ چپی، کامران (1399). پهنه‌بندی خطر سیلاب در شهر سنندج با استفاده از مدل‌های ترکیبی شاخص آماری و تابع شواهد قطعی، مطالعات شهری، 36، 40-27. doi: 10.34785/J011.2021.801
  2. آزادی، فهیمه؛ صدوق، سیدحسن؛ قهرودی، منیژه؛ شهابی، هیمن (1399). پهنه‌بندی حساسیت خطر سیل در حوضه آبخیز رودخانه کشکان با استفاده از دو مدل WOE و EBF، جغرافیا و مخاطرات محیطی، 33، 60-45. doi: 10.22067/geo.v9i1.83090
  3. داوند، خدیجه؛ شهابی، هیمن؛ سالاری، ممند (1400). پهنه‌بندی خطر سیلاب در شهر ایلام با استفاده از مدل تابع شواهد قطعی، جغرافیا و مخاطرات محیطی، 38، 20-1. doi: 10.22067/geoeh.2021.67947.1007
  4. رحیم‌پور، توحید؛ رضائی مقدم، محمدحسین؛ حجازی، سید اسدالله؛ ولیزاده کامران، خلیل (1402). مدل‌سازی حساسیت خطر وقوع سیل در حوضه آبریز الندچای بر پایه یک رویکرد طبقه‌بندی ترکیبی نوین (FURIA-GA-LogitBoost). جغرافیا و مخاطرات محیطی، 12(1)، 1-24. doi: 10.22067/geoeh.2022.74170.1141
  5. رحیم‌پور، توحید (1400). تحلیل تغییرات فضایی حساسیت خطر سیل و فرسایش خاک بر پایه رویکردهای هیدروژئومورفیک (مطالعه موردی: حوضه آبریز الندچای، شمال غرب ایران)، پایان‌نامه دوره دکتری، استاد راهنما (دکتر محمدحسین رضائی‌مقدم)، دانشگاه تبریز، دانشکده برنامه‌ریزی و علوم محیطی، رشته ژئومورفولوژی.
  6. رستمی‌خلج محمد؛ رحمتی، امید؛ رشیدپور، مصطفی؛ سلمانی، حسین (1399). پتانسیل‌یابی خطر آب‌گرفتگی شهری با استفاده از مدل تابع شواهد قطعی ((EBF (مطالعه موردی: شهرک امام علی (ع) شهر مشهد)، پژوهشنامه مدیریت حوزه آبخیز، 11 (22)، 22-1. doi:10.52547/jwmr.11.22.1
  7. رضائی‌مقدم، محمدحسین و ثقفی مهدی (1396). مبانی ژئومورفولوژی رودخانه‌ای، چاپ اول. سازمان مطالعه و تدوین کتب علوم انسانی دانشگاه‌ها (سمت).
  8. رضائی‌مقدم، محمدحسین؛ رحیم‌پور, توحید (1402). تهیه نقشه پتانسیل خطر وقوع سیل با استفاده از دو روش نسبت فراوانی و شاخص آماری (مطالعه موردی: حوضه آبریز آجی‌چای). مدیریت مخاطرات محیطی، 10(4)، 291-308. doi: 10.22059/jhsci.2024.369163.803
  9. شهابی، هیمن (1400). کاربرد مدل‌های شبکه عصبی مصنوعی، نسبت فراوانی و تابع شواهد قطعی در تهیه نقشه حساسیت به وقوع سیل در حوزه آبخیز هراز: الگویی برای مطالعات مخاطرات سیلاب شهری، پژوهش و برنامه‌ریزی شهری، 45، 202-181. https://doi.org/10.30495/jupm.2021.4245
  10. قاسمی، احمدرضا و محمدی، یوسف (1396). گزارش مقدماتی رخداد سیل در شمال غرب کشور، سازمان زمین‌شناسی و اکتشافات معدنی کشور، دفتر بررسی مخاطرات زمین‌شناختی، زیست‌محیطی و مهندسی.
  11. Ahmad, T., Pandey, A.C., Kumar, A. (2018). Flood hazard vulnerability assessment in Kashmir Valley, India using geospatial approach. Physics and Chemistry of the Earth, Parts A/B/C, 105, 59-71.
  12. Arabameri, A., Rezaei, K.H., Cedra, A., Conoscenti, C.H., Kalantari, Z. (2019). A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Sci Total Environ, 10(16), 443-453.
  13. Arora, A. (2022). Flood susceptibility prediction using multi criteria decision analysis and bivariate statistical models: a case study of Lower Kosi River Basin, Ganga River Basin, India. Stochastic Environmental Research and Risk Assessment, 37(1), 1855-1877.
  14. Azadi, F., Sadough, S. H., Ghahroudi, M., & Shahabi, H. (2020). Zoning of Flood Risk in Kashkan River basin using Two Models WOE and EBF. Journal of Geography and Environmental Hazards, 9(1), 45-60. doi: 10.22067/geo.v9i1.83090 [In Persian].
  15. Azadtalab, M., Shahabi, H., Shirzadi, A., & Chapi, K. (2020). Flood hazard mapping in Sanandaj using combined models of statistical index and evidential belief function. Motaleate Shahri, 9(36), 27-40. doi: 10.34785/J011.2021.801 [In Persian].
  16. Chowdhuri, I., Chandra Pal, S., Chakrabortty, R. (2020). Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Advances in Space Research, 65, 1466-1489.
  17. Davand, K., Shahabi, H., & Salari, M. (2021). Flood hazard mapping in Ilam city using evidential belief function model. Journal of Geography and Environmental Hazards, 10(2), 1-20. doi: 10.22067/geoeh.2021.67947.1007 [In Persian].
  18. Gajowniczek, K.f, Ząbkowski, T. (2014). Estimating The Roc Curve And Its Significance For Classification Models’ Assessment. Quantitative Methods In Economics, 2, 382 – 391.
  19. Ghasemi, A., & Mohammadi, Y. (2017). The preliminary report of the flood incident in the northwest of Iran, the Geological and Mineral Exploration Organization of the country, Geological, Environmental and Engineering Hazard Investigation Office. [In Persian].
  20. Ghosh, S., Carranza, E.J.M. (2010). Spatial analysis of mutual fault/fracture and slope controls on rocksliding in Darjeeling Himalaya, India. Geomorphology, 122, 1-24.
  21. Joo Oh, H., Kadavi, P.R., Lee, C.W., Lee, S. (2017). Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models. Geomatics, Natural Hazards and Risk, 9(1), 1053-1070.
  22. Maranzoni, A., D'Oria, M., Rizzo, C. (2022). Quantitative flood hazard assessment methods: A review. Flood Risk Management, 16(1), doi.org/10.1111/jfr3.12855.
  23. MergaLeta, B., Adugna, D. (2023). Characterizing the level of urban Flood vulnerability using the social-ecological-technological systems framework, the case of Adama city, Ethiopia. Helion, 9(10). doi.org/10.1016/j.heliyon.2023.e20723.
  24. Mikail, A.Q,. Hamad, R. (2023). Mapping Flood Vulnerability by Applying EBF And AHP Methods, in the Iraqi Mountain Region. Science Journal of University of Zakho, 11(1), 1-10.
  25. Mishra, K., Sinha, RS. (2020). Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: A hydro-geomorphic approach. Geomorphology, 350, doi.org/10.1016/j.geomorph.2019.106861.
  26. Poudyal, C.P,. Chang, C., Oh, H.J,. Lee, S. (2010). Landslide susceptibility maps
    comparing frequency ratio and artificial neural networks: a case study from the
    Nepal Himalaya. Environ Earth Sci, 61, 1049–1064.
  27. Rahimpour, T., Rezaei Moghaddam, M. H., Hejazi, S. A., & Valizadeh Kamran, K. (2023). Flood susceptibility modeling in the Aland Chai Basin based on a new ensemble classification approach (FURIA-GA-LogitBoost). Journal of Geography and Environmental Hazards, 12(1), 1-24. https://doi.org/10.22067/geoeh.2022.74170.1141 [In Persian].
  28. Rahimpur, T. (2022). Spatial Variations Analysis of Flood hazard Susceptibility and Soil Erosion Based on Hydrogeomorphic Approaches (Case Study: Aland Chai Basin, North West of Iran). PhD thesis, Tabriz University, Faculty of Planning and Environmental Sciences. [In Persian].
  29. Ramesh, V,. Iqbal, S.S. (2020). Urban flood susceptibility zonation mapping using evidential belief function, frequency ratio and fuzzy gamma operator models in GIS: a case study of Greater Mumbai, Maharashtra, India. Geocarto International, 37(2), 581-606.
  30. Razali, N., Mustaph, A., Shuhaida, I. (2020). Machine learning approach for flood risks prediction. International Journal of Artificial Intelligence, 73, 73-80.
  31. Rezaei Moghaddam, M. H,. Saghafi, Mahdi. (2016). Fundamental of geomorphology. first edition. Organization for studying and compiling humanities books of universities (Samt). [In Persian].
  32. Rezaei Moghaddam, M. H., & Rahimpour, T. (2024). Preparation of flood hazard potential map using two methods: Frequency Ratio and Statistical Index (Case study: Aji Chai Basin). Environmental Management Hazards, 10(4), 291-308. doi: 10.22059/jhsci.2024.369163.803 [In Persian].
  33. Rostami Khalaj M, Rahmati O, Rashid poor M, Salmani H. (2020). Urban Inundation Hazard Potential using Evidential Belief Function model (EBF) (Case study: Emam Ali town, Mashhad city). J Watershed Manage Res. 11(22), 1-10. doi:10.52547/jwmr.11.22.1 [In Persian].
  34. Roy, D., Sarkar, A., Kundu, P., Paul, S., Chandra Sarkar, B. (2023). An ensemble of evidence belief function (EBF) with frequency ratio (FR) using geospatial data for landslide prediction in Darjeeling Himalayan region of India. Quaternary Science Advances, 11, doi.org/10.1016/j.qsa.2023.100092.
  35. Schumann, G.J.P., Moller, D.K. (2015). Microwave remote sensing of flood inundation. Physics and Chemistry of the Earth, Parts A/B/C, 83–84, 84-95.
  36. Shahabi, H. (2021). Application of artificial neural network models, frequency ratio and definite evidence function in preparation of flood susceptibility map in Haraz watershed: a model for urban flood risk studies. Urban Research and Planning, 45, 181-202. https://doi.org/10.30495/jupm.2021.4245 [In Persian].
  37. Sheng, F., Liu, S., Zhang, T., Liu, G,. Liu, Zhao. (2022). Quantitative assessment of the impact of precipitation and vegetation variation on flooding under discrete and continuous rainstorm conditions. Ecological Indicators, 144(9), doi.org/10.1016/j.ecolind.2022.109477.
  38. Tao, W. (2021). Quantifying coastal flood vulnerability for climate adaptation policy using principal component analysis. Ecological Indicators, 129, doi.org/10.1016/j.ecolind.2021.108006.
  39. Thapa, S., Shrestha, A., Lamichhane, S., Adhikar, R., & Gautam, D. (2020). Catchment-scale flood hazard mapping and flood vulnerability analysis of residential buildings: The case of Khando River in eastern Nepal. Journal of Hydrology, Regional Studies, 30, doi.org/10.1016/j.ejrh.2020.100704.