تحلیل مکانی - زمانی توزیع آتش‌سوزی‌ها در ایران با استفاده از داده‌های ماهواره‌ای: شناسایی مناطق پرخطر و دوره‌های بحرانی

نوع مقاله : مقاله کامل

نویسنده

گروه جغرافیای طبیعی، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران

چکیده

آتش‌سوزی‌ها یکی از مهم‌ترین چالش‌های زیست‌محیطی ایران به شمار می‌روند. این پژوهش با هدف شناسایی استان‌های پرخطر و دوره‌های بحرانی وقوع آتش‌سوزی‌ها به تحلیل الگوهای مکانی و زمانی آتش‌سوزی‌ها طی دوره 1382 تا 1402 در ایران، با استفاده از داده‌های ماهواره‌ای پرداخته است. هدف نهایی این تحقیق، بهبود مدیریت آتش‌سوزی‌ها با ارائه مکان استقرار بهینه ایستگاه‌های آتش‌نشانی در استان‌های پرخطر است. پژوهش از سری زمانی داده‌های ماهواره‌ای و پلتفرم Google Earth Engine و GIS، و مدل‌سازی رگرسیونی چند متغیره و برآورد چگالی کرنل (KDE) جهت شناسایی عوامل محیطی مؤثر و مناطق پرتکرار و دوره‌های بحرانی وقوع آتش‌سوزی استفاده کرده است. یافته‌ها نشان می‌دهند که در طول دوره 20ساله، مجموعاً 955600 کیلومترمربع از اراضی ایران دچار آتش‌سوزی شده‌اند. بیشترین مساحت سوخته شده در سال ۱۳۸۹ به میزان 7722 کیلومترمربع و کمترین آن در سال 1401 به میزان 3031 کیلومترمربع ثبت‌شده است. همبستگی بین بارش ماهانه و مساحت سوخته شده معادل ۰٫۲۴- محاسبه شد که نشان‌دهنده رابطه معکوس بین افزایش بارندگی و کاهش آتش‌سوزی‌ها است. استان‌های خوزستان(۲۵۰۰۰ کیلومترمربع)، فارس و ایلام با بیشترین مساحت سوخته شده را طی این دوره تجربه کرده‌اند و محل بهینه برای استقرار ایستگاه‌های آتش‌نشانی هستند. همچنین، فصل تابستان، به‌ویژه در سال‌های ۱۳۸۹ و ۱۳۸۶، بیشترین تعداد و مساحت آتش‌سوزی‌ها را داشته است. این پژوهش با شناسایی الگوهای مکانی و زمانی، محل بهینه استقرار ایستگاه‌های آتش‌نشانی در مناطق استان‌های مذکور را پیشنهاد می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatiotemporal Analysis of Wildfire Distribution in Iran Using Satellite Data: Identifying High-Risk Regions and Critical Periods

نویسنده [English]

  • Abolghasem Goorabi
Department of Physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran
چکیده [English]

ABSTRACT
Wildfires represent a critical environmental challenge in Iran, posing severe threats to natural resources and ecosystems. This study aims to analyze the spatiotemporal patterns of wildfires across Iran from 2003 to 2023, leveraging satellite data to identify high-risk provinces and critical periods. The findings contribute to recommendations for optimal fire station placement. The methodology integrates time-series satellite data, spatiotemporal analyses using Google Earth Engine and GIS, and multivariate regression modeling with kernel density estimation to identify influential environmental factors and areas with frequent fires. Results reveal that out of a total burned area of 95,600 square kilometers, the largest burned area was recorded in 2010 (7,722 km²) and the smallest in 2022 (3,031 km²). A negative correlation of -0.24 between monthly precipitation and burned area suggests that increased rainfall is associated with reduced wildfire incidence. The provinces of Khuzestan, Fars, and Ilam recorded the highest burned areas, with Khuzestan alone experiencing over 25,000 km² of burned terrain. Summer, particularly in the years 2010 and 2007, marked peak fire occurrence and extent. By accurately identifying spatiotemporal patterns, this study provides critical insights for targeted placement of fire stations and effective wildfire management in high-risk regions.
Extended Abstract
Introduction
Wildfires are a major threat to environmental, economic and social stability in many parts of the world. Over time, the frequency and intensity of wildfires are increasing due to climate change, human activities and other natural factors. Iran is a country with diverse ecosystems and climatic conditions. The frequency of wildfires in Iran has also increased in recent decades. Understanding the spatio-temporal patterns of fires is important for developing effective techniques and strategies with minimal negative impacts. In this paper, the spatial distribution of wildfires in Iran between 2003 and 2023 has been studied using MODIS satellite data in high-risk periods and regions where environmental protection can be envisaged by optimising resource allocation.
In the light of the above discussion, the general objectives of the present research would henceforth be: 

The spatio-temporal analysis of forest fires in Iran for the last twenty years.
To identify provinces with high risk of forest fires where management and resources could be focused.
To identify high-risk seasons and periods when forest fires are most likely to occur.
Provide actionable programme recommendations: Develop and organise preventive measures to reduce the impact of forest fires.

 
Methodology
This study has developed a method that combines satellite data analysis, geographic information system techniques and statistical methods to analyse the patterns of wildfires in Iran. The main dataset used in this study is from MODIS/006/MCD64A1, a globally recognised dataset for high-resolution global burned area information. The period considered in this paper is from 2003 to 2023; therefore, it includes all fire events recorded in this period as documented by the MODIS data.
Data Collection
Of these, the MODIS Burned Area Product MCD64A1 was selected because it has a very high spatial resolution of 500 metres and is frequently updated, making it suitable for monitoring wildfires over a long period of time. The subsequent extraction of burned areas per Iranian province was made possible by the cloud-based Google Earth Engine platform, which streamlines the way users can process and analyse large geospatial datasets.
Data Analysis and Processing
A combination of Google Earth Engine was used to analyse the extent, frequency and severity of wildfires in different provinces of Iran. Seasonal and annual totals were used to aggregate the data to identify patterns of occurrence. A spatio-temporal map showing the spatial occurrence of wildfires was created, from which hotspots were derived. Overlaying the burned area data with environmental and climatic variables using GIS techniques, such as vegetation type, elevation, slope, aspect, geographical units, mean temperature and rainfall, provided an indication of the conditions most associated with each land type.
 
Results and Discussion
Spatial Distribution of the Fires
There were strong spatial contrasts in the frequency of wildfires between Iranian provinces. Khuzestan, Fars and Ilam were identified as the most fire-prone regions, as their large burnt areas occurred consistently throughout the two decades studied, due to arid climatic conditions, better vegetation cover and a high frequency of wildfire incidents.
The low threat in Yazd, Qom and Semnan provinces can be explained by the large area of arid environment and sparse vegetation.
Distribution across time and seasonality
The temporal analysis highlighted the strong seasonality of forest fires, dominated by the summer months with high temperatures and low humidity. Spring events may be related to the accumulation of dry vegetation and the rise in temperature from March to May. Among the seasonal patterns, the lowest level of activity occurred in winter, from December to February, due to generally cooler and wetter conditions that neutralised the fire hazard.
Places and Time-Rime of High Risk
It is this integration of spatial and temporal analysis that has made it possible to outline high-risk areas and critical periods for fires in Iran. Regionally, the most vulnerable parts of the country included the south-western and western provinces of Khuzestan, Fars and Ilam respectively, essentially defining the areas where wildland fire management needs to be prioritised.
Within these regions, late spring and summer have been identified as the period when conditions are most conducive to fire outbreaks.
Factors of Wildfire Risk
The result of this study indicated that climatic and environmental factors are dominant in describing fire hazard patterns in Iran. High temperatures with low humidity and abundant vegetation are the causes of the main factors of fire hazards. This factor is influenced by human activities, especially land clearing and agricultural fields, and unintentional fires.
All these natural factors interact with others of anthropogenic origin and therefore require a holistic approach to dealing with wildland fires, both in terms of prevention and response.
Consequences for Wildfire Management
The method also makes it possible to identify high-risk areas and critical periods, which is very important for policy makers and land managers. If resources were directed to these specific areas and times, it is likely that better wildfire prevention and control could be achieved. The establishment of firefighting units, early warning systems and community involvement in high-risk provinces can avert most of these influences on wildfires.
The integration of traditional fire management with modern remote sensing and GIS technologies could help to increase the effectiveness of such an attempt to manage wildfires.
Recommendations
Based on the findings of this research study, the following recommendations are made to improve the management of wildfires in Iran:

Focus on high-risk provinces: Concentrate efforts and resources on the high-risk southwestern and western provinces. Increase the number of fire stations, firefighting equipment and regular training of personnel to improve preparedness and response capabilities.
Seasonal fire monitoring and early warning: Apply seasonal monitoring, supported by satellite data analysis, to detect early signs of fire activity. For early detection of fire risks, establish an early warning system to alert authorities and people in advance to take necessary precautions in time.
Public awareness and participation: Educate the public about forest fires through community awareness to prevent the recurrence of fires. Educational campaigns such as safe agricultural practices, responsible land use and prompt reporting of fire incidents will be emphasised. Local communities, if involved in fire management plans, would feel more responsible and cooperative in protecting natural resources.
Policy and legislation: Develop and implement policies and legislation on wildfire prevention, land management and fire management. Activities that increase the risk of wildfires, such as land clearing and uncontrolled burning, should be controlled. Increased penalties for unlawful acts that cause fires could act as a deterrent to certain behaviours, with better compliance with prescribed fire safety regulations.
Research and development: There is a need to further develop the models used to predict wildland fires, including an understanding of the new dynamics of fire behaviour brought about by climate change. International organisations, government agencies and research institutions increase the likelihood of innovative solutions to wildland fires.

 
Conclusion
The wildfire distribution analysis developed here for Iran indicates the high-risk regions and their critical management periods. As fire risks are spatially and temporally distributed, the results will be very important for targeted wildfire management strategies. The result will be an overall capability for Iran to prioritise high-risk areas, develop early warning systems and engage local communities in ways that will ensure maximum fire prevention and control capability for Iran, while better protecting its natural resources and significantly reducing the socio-economic impacts of such destructive events.
It is this integration of advanced satellite remote sensing and GIS technologies that would be fundamental in achieving the stated goals and objectives of moving towards fire management practices that create harmony, resilience and sustainability.
 
Funding
There is no funding support.
 
Authors’ Contribution
All of the authors approved thecontent of the manuscript and agreed on all aspects of the work.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.
 

کلیدواژه‌ها [English]

  • Spatiotemporal Pattern
  • MODIS Satellite
  • Iran
  • Analysis Of Burned Area
  • Fire Management Strategies
  1. پهلوانی، پرهام؛ راعی، امین و بیگدلی، بهناز. (1398). تعیین فاکتورهای مؤثر بر آتش‌سوزی جنگل با استفاده از ترکیب مدل رگرسیون اسپلاین تطبیقی چندمتغیره و الگوریتم ژنتیک (مطالعه موردی: جنگل گلستان). تحلیل فضایی مخاطرات محیطی، 6(4)، 1-18.
  2. بهرامی پیچاقچی، حدیقه؛ نوروز ولاشدی، رضا و غلامی سفیدکوهی، محمدعلی. (1403). بررسی روند آتش‌سوزی‌ها و ارتباط آن با متغیرهای اقلیمی. مجله مخاطرات محیط طبیعی، 13(49)، 128.
  3. شجاعی زاده، کبری؛ احمدی، محمود و داداشی رودباری، عباسعلی. (1402). تغییرات زمانی-مکانی آتش‌سوزی نواحی رویشی ایران مبتنی بر داده‌های MODIS. مخاطرات محیط طبیعی، 12(36)، 41-60.
  4. احمدی اردکانی، مرتضی؛ رجبی، محمد و سرکارگر اردکانی، علی. (1394). پهنه‌بندی مناطق دارای پتانسیل آتش‌سوزی در جنگل‌ها با استفاده از روش‌های تصمیم‌گیری چندمعیاره. جغرافیا و برنامه‌ریزی محیطی، 26(57)، 172.
  5. جورغلامی، مقداد؛ ریزوندی، وحید و مجنونیان، باریس. (1392). ارزیابی اثرات محیط‌زیستی بهره‌برداری حاصل از قطع درختان بر روی توده باقی‌مانده (مطالعه موردی: جنگل خیرود). پژوهش‌های محیط‌زیست، 4(7)، 115-124.
  6. نصرتی رامش، منیژه؛ بیات، حسین و اسلامی، سیده فاطمه. (1396). تأثیر چرای دام بر برخی خصوصیات فیزیکی و شیمیایی خاک (مطالعه موردی: حوضه گنبد ملایر). در پانزدهمین کنگره علوم خاک ایران.
  7. پرنیان، مینا، اسعدی اسکویی، ابراهیم و رهنما، مهدی. (1400). بررسی روش‌های پایش و پیش‌بینی آتش‌سوزی نواحی رویشی ایران و جهان. نشریه پژوهش‌های اقلیم‌شناسی، 12(47)، 101-120.
  8. Abatzoglou, J. T., & Williams, A. P. (2016). Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences, 113(42), 11770-11775. https://doi.org/10.1073/pnas.1607171113
  9. Ahmadi Ardakani, M., Rajabi, M., & Sarkargar Ardakani, A. (2015). Zoning areas with fire potential in forests using multi-criteria decision-making methods. Geography and Environmental Planning, 26(57), 172. [In Persian] 
  10. Bahrami Pichaghchi, H., Norouz Valashdi, R., & Gholami Sefidkouhi, M. A. (2024). Analysis of wildfire trends and their relationship with climatic variables. Journal of Natural Environmental Hazards, 13(49), 128. [In Persian] 
  11. Bakke, S. J., Wanders, N., van der Wiel, K., & Tallaksen, L. (2023). A data-driven model for Fennoscandian wildfire danger. Natural Hazards and Earth System Sciences. https://doi.org/10.5194/nhess-23-65-2023
  12. Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., & D’Antonio, C. M. (2009). Fire in the Earth system. Science, 324(5926), 481-484. https://doi.org/10.1126/science.1163886
  13. Carmo, M., Moreira, F., Casimiro, P., & Vaz, P. (2011). Land use and topography influences on wildfire occurrence in northern Portugal. Landscape and Urban Planning, 100(1–2), 169-176. https://doi.org/10.1016/j.landurbplan.2010.11.017
  14. Dong, B., Li, H., Xu, J., Han, C., & Zhao, S. (2023). Spatiotemporal analysis of forest fires in China from 2012 to 2021 based on Visible Infrared Imaging Radiometer Suite (VIIRS) active fires. Sustainability, 15(12), 9532. https://doi.org/10.3390/su15129532
  15. Eskandari, S., Miesel, J. R., & Pourghasemi, H. R. (2020). The temporal and spatial relationships between climatic parameters and fire occurrence in northeastern Iran. Ecological Indicators, 118, 106720. https://doi.org/10.1016/j.ecolind.2020.106720
  16. Gallo, C., Eden, J., Dieppois, B., Drobyshev, I., Fulé, P., San-Miguel-Ayanz, J., & Blackett, M. (2023). Evaluation of CMIP6 model performances in simulating fire weather spatiotemporal variability on global and regional scales. Geoscientific Model Development, 16, 3103-3120. https://doi.org/10.5194/gmd-16-3103-2023
  17. Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Lasslop, G., Li, F., et al. (2016). The status and challenge of global fire modeling. Biogeosciences, 13(11), 3359-3375. https://doi.org/10.5194/bg-13-3359-2016
  18. Jaafari, A., Mafi Gholami, D., & Zenner, E. K. (2017). A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecological Informatics, 39, 32-44. https://doi.org/10.1016/j.ecoinf.2017.03.003
  19. Jourgholami, M., Rezouvandi, V., & Majnuniyan, B. (2014). Impact of information and communication technology on environment. Environmental Researches, 4(7), 115-124. [In Persian] 
  20. Kanwal, R., Rafaqat, W., Iqbal, M., & Song, W. (2023). Data-driven approaches for wildfire mapping and prediction assessment using a convolutional neural network (CNN). Remote Sensing.
  21. Kaleem, Mehmood., Anees, Sh. A., Luo, M., Akram, M., Zubair, M., Khan, K. A., & Khan, W. R. (2024). “Assessing Chilgoza Pine (Pinus Gerardiana) Forest Fire Severity: Remote Sensing Analysis, Correlations, and Predictive Modeling for Enhanced Management Strategies.” Trees, Forests and People, 16 (June),100521. https://doi.org/10.1016/j.tfp.2024.100521.
  22. Nami, M., Jaafari, A., Fallah, M., & Nabiuni, S. (2018). Prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. International Journal of Environmental Science and Technology, 15(2), 373-384. https://doi.org/10.1007/s13762-017-1371-6
  23. Naszarkowski, N. A. L., Cornulier, T., Woodin, S. J., Ross, L. C., Hester, A. J., & Pakeman, R. J. (2024). Factors affecting severity of wildfires in Scottish heathlands and blanket bogs. Science of The Total Environment, 931, 172746. https://doi.org/10.1016/j.scitotenv.2024.172746
  24. Nosrati Ramesh, M., Bayat, H., & Eslami, S. F. (2017). The impact of grazing on some physical and chemical properties of soil (Case study: Gonbad Malayer Basin). In 15th Iranian Soil Science Congress. [In Persian] 
  25. Pahlavani, P., Raee, A., & Beigdelii, B. (2019). Determining effective factors on forest fire using the compound of multivariate adaptive regression spline and genetic algorithm, a case study: Golestan, Iran. Journal of Spatial Analysis of Environmental Hazards, 6(4), 1-18. [In Persian] 
  26. Parnian, M., Asadi Oskouei, E., & Rahnama, M. (2021). Review of monitoring and predicting forest fire in vegetation areas of Iran and the world. Journal of Climatology Researches, 12(47), 101-120. [In Persian] 
  27. Ruíz-García, V. H., Borja de la Rosa, M. A., Gómez-Díaz, J. D., Asensio-Grima, C., Matías-Ramos, M., & Monterroso-Rivas, A. I. (2022). Forest fires, land use changes, and their impact on hydrological balance in temperate forests of Central Mexico. Water, 14(3), 383. https://doi.org/10.3390/w14030383
  28. Sadeghi, A., Ahmadi Nadoushan, M., & Ahmadi Sani, N. (2024). Segment-level modeling of wildfire susceptibility in Iranian semi-arid oak forests: Unveiling the pivotal impact of human activities. Trees, Forests and People, 15, 100496. https://doi.org/10.1016/j.tfp.2024.100496
  29. Shahzad, F., Mehmood, K., Hussain, K., Haidar, I., Anees, Sh. A., Muhammad, S., Ali, J., Adnan, M., Wang, Zh., & Zhongke, F. (2024). “Comparing Machine Learning Algorithms to Predict Vegetation Fire Detections in Pakistan.” Fire Ecology, 20 (1), 57. https://doi.org/10.1186/s42408-024-00289-5.
  30. Shahzad, K., Xu, Y., Luo, X., & Ali, K. (2024). Predicting wildfire incidents through satellite monitoring. Fire Management Strategies.
  31. Shojaeizadeh, K., Ahmadi, M., & Dadashi-Roudbari, A. (2023). Spatiotemporal changes of forest fire in vegetation areas of Iran based on MODIS sensor. Journal of Natural Environmental Hazards, 12(36), 1-15. [In Persian] 
  32. Yue, W., Ren, C., Liang, Y., Lin, X., Yin, A., & Liang, J. (2023). Wildfire risk assessment considering seasonal differences: A case study of Nanning, China. Forests. https://doi.org/10.3390/f14081616