ارزیابی روش‌های تحلیل شبکه (ANP) و تحلیل چندمعیارة مکانی در بررسی پتانسیل وقوع زمین‌لغزش در محدودة محور و مخزن سدها (مطالعة موردی: سد قلعه‌چای)

نوع مقاله : مقاله کامل

نویسندگان

1 استاد گروه ژئومورفولوژی، دانشگاه تبریز

2 کارشناسی‌ارشد سنجش از دور و GIS، دانشگاه تبریز

3 دانشجوی کارشناسی‌ارشد هیدروژئومورفولوژی، دانشگاه تبریز

چکیده

ارزیابی پتانسیل وقوع زمین‌لغزش در منطقه‌ای که به دلیل وضعیت جغرافیایی و ساخت‌وسازهای انسانی مستعد لغزش است ضروری است. سد مخزنی قلعه‌چای ‌عجبشیر یکی از این نوع نواحی است. در این مطالعه، به منظور بررسی پتانسیل وقوع زمین‌لغزش روش‌های تحلیل شبکه (ANP) و چندمعیارة مکانی ارزیابی شد. در این مطالعه از تصویر TM، 2011 ماهوارة لندست استفاده شد. فاکتورهای مؤثر بر وقوع زمین‌لغزش (شیب، جهت دامنه، لیتولوژی، کاربری زمین، فاصله از گسل، فاصله از رودخانه، فاصله از جاده، طبقات ارتفاعی) در محیط GIS آماده و سپس با لایة پراکنش زمین‌لغزش‌ها قطع داده شد و نقشه‌های پهنه‌بندی خطر زمین‌لغزش در روش‌های فوق تولید شد. نتایج نشان داد که در بررسی پتانسیل وقوع زمین‌لغزش در منطقة مورد مطالعه، فرایند تحلیل چندمعیارة مکانی نسبت به روش فرایند تحلیل شبکه عملکرد بهتری دارد. همچنین، تفسیر ضرایب نشان داد که کاربری اراضی، طبقات ارتفاعی و جهت دامنه نقش مهمی در وقوع زمین‌لغزش دارد و با استفاده از نقشة پیش‌بینی احتمال وقوع زمین‌لغزش، منطقه به پنج گروه حساسیت بسیار پایین، پایین، متوسط، بالا و بسیار بالا تقسیم شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Analysis Network Process and Heuristic Method in the Investigation of Landslide Potential in the Axis Range and Reservoir Dams (Case Study: Ghalea Chai Dam)

نویسندگان [English]

  • shahram Roostaei 1
  • leyla Khodaei Geshlag 2
  • Fatemah Khodaei Geshlag 3
1 Professor of geomorphology, University of Tabriz
2 Master of Sciense, Department of RS & GIS, University of Tabriz
3 Student of MSc of Hydrogeomorphology, University of Tabriz
چکیده [English]

Extended Abstract
Introduction:
Natural disasters management requires local information in order to be ready against dangers and reduce their procedure. Hence, evaluation of landslide occurrence in the area which is prone to landslide due to geographical condition and human constructions is high crucial. Ghale Chai dam located at Ajabshir Watershed is one kind of such areas. So the aim of present investigation is to identify hillside instabilities and movements and their influencing factors to prevent their harmful effects on natural resources and other parts of economical and engineering development and recognize points with high prone of danger. Hence, the aim of present investigation is to assess analytical network process and Heuristic method in determining the landslide prone areas in range axis and reservoir of Ghale Chai dam of Ajabshir.
Methods and Materials:
The efficiency of network analysis process and logistic regression method were studied to investigate landslide potential in studied area dam. ANP model building requires the definition of elements and their assignment to clusters and a definition of their relationships (I.e. the connections between them indicating the flow of influence between the elements). Like AHP, ANP is founded on ratio scale measurements and pair wise comparisons of elements to divide priorities of selected alternatives. In addition relations among criteria and sub-criteria are included in evaluations, allowing dependencies both within a cluster (inner dependence) and between clusters (outer dependence) (Saaty: 2001). Pairwise comparison is now done, both for weighting clusters (criteria) and for estimating the direction and importance of influences between elements, numerically pictured as ratio scale in a so-called super matrix. Network analysis process was used for the first time in Iran in order to evaluate landslide, done using super decision and arc GIS software. However, to assess landslide susceptibility using heuristic method there are two common approaches: direct and indirect method. The first method applies direct assessment to interpret susceptibility in the field on the basis of detailed maps (geomorphological maps, for instance). The latter does not assess directly in the field, but via data integration techniques in any particular software. This study uses indirect heuristic method. Heuristic approach is a semi-qualitative method. Besides uses knowledge properties (expert opinions, previous research results or literature recommendations), it also uses index-based procedures such as simple ranking and rating or analytical hierarchy process (AHP) in assigning weight and creating model. Concerning this, scoring and weighting process are crucial to build a model in heuristic approach.
Results and Discussion:
Considering research questions, a three-layer network model composed of target layer, criteria layer and options layer was designed and organized in network analysis process. The priority of danger classes was determined based on their coefficients after doing paired comparisons among elements and clusters. Zoning map was classified in five classes from very high to very low. The weighting judgment process in pair-wise comparison gives a weight for every Influencing factor. From the calculation, the final criteria tree (with weight in 2 digits) was created. Bigger weights indicates that, the pertinent factor gives bigger influence toward the model .Aspect has the biggest contribution (0.2519), followed by distance to road and litology with value 0.1786 and 0.1747, respectively. On the other side, the lowest contribution is given by slope (0.0387), followed by Dem (0.0590). No negative weights in heuristic method. The inconsistency value is 0, 0 62194: smaller than 0, 1. It means, according to SMCE validation, the choosing process is consistent. No improper stage while positioning the factor based on its importance to another After running paired comparisons between elements and clusters the priority of the danger classes based on their significance was determined and the coefficients of the factors showed that the aspect factor has the maximum effect in occurrence of the landslides if the area .the zoning of map were classified in five classes of very high to very low risk class
Results:
Results obtained from this investigation indicated that from eight influential factors of landslide occurrence in the area, land use, height classes and domain direction have the highest influence in landslide occurrence. Moreover comparisons of distributed landslide proportion degrees with zoning maps of above mentioned models indicated that Heuristic model with 86.25 percent of proportion had better performance than network analysis. So from two statistical models obtained from two methods used in this study, statistical model obtained from Heuristic method administration (2nd equation) is selected and introduced as the best model. Moreover, considering results obtained from landslide danger zoning in studied area, using two early mentioned methods, it was conclude that 67.33% of zone total area has very high danger of landslide occurrence.
Keywords: Ghale Chai Dam, Analytic Network Process (ANP), Heuristic method, Landsat Satellite, Landslide.

کلیدواژه‌ها [English]

  • Ghalea Chai dam
  • Analytic Network Process ( ANP )
  • Heuristic method
  • Landsat satellite
  • landslide
احمدزاده، ح. (1384). مدلسازی فرسایش و رسوب حوضة آبریز قلعه‌چای عجب‌شیر با استفاده از داده‌های ماهواره‌ای در محیط GIS . پایان‌نامة کارشناسی‌ارشد، استاد راهنما: روستائی، شهرام، رشتة سنجش از دور و GIS، دانشگاه تبریز، دانشکدة علوم انسانی و اجتماعی .
خدائی قشلاق، ل. (1392). ارزیابی روش‌های رگرسیون لجستیک و تحلیل شبکه در بررسی پتانسیل وقوع زمین‌لغزش در محدودة محور و مخزن سد. مطالعة موردی: سد قلعه‌چای عجبشیر. پایان‌نامة کارشناسی‌ارشد، استاد راهنما: روستائی، شهرام، رشتة سنجش از دور و GIS ، دانشگاه تبریز، دانشکدة جغرافیا.
روستایی، ش. (1383). بررسی وقوع زمین‌لغزش در روستای نصیرآباد ورزقان (استان آذربایجان‌شرقی) با استفاده از روش‌های کمّی. فصلنامة علوم انسانی، دورة 8، شمارة 1.
سرتیپی، ع.؛.انتظام سلطانی، ا. (1391). بررسی زمین‌لغزش‌های ساختگاه سد قلعه‌چای عجبشیر. سی‌امین گردهمایی علوم زمین، بهمن، ص 1- 7.
فتاحی اردکانی، محمد علی . غیومیان، جعفر. جلالی، نادر ( 1380)،"ارزیابی کارآیی مدل های پهنه بندی خطرزمین لغزش در حوزه آبخیز سد لتیان."مجله زمین شناسی مهندسی، جلد 1، شماره 1، بهار، صص:42-25
محمدی‌لرد، ع. (1388). فرایندهای تحلیل شبکه‌ای در (ANP) و سلسله‌مراتبی. نشر تهران البرز فردانش، ص 1-144.
Ahmadzadeh H. (2005), Modeling Erosion and Sediment of Catchment of Ghalea Chai Ajabshir by Using Satellite Data in GIS, Master's Thesis, Supervisor: Roostaei. Sh., Remote Sensing and GIS, University of Tabriz, pp. 1- 140.
Ayalew, L. and Yamagishi, H. (2005), Theapplication of GIS-based logistic regression forlandslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan, Geomorphology 65 (1-2), pp. 15-31.
Cabral, P.B.C. (2011), Landslide Susceptibility Assessment in Karanganyaar Regency– Indonesia, UniversidadeNova de Lisboa, February.
Chau K.T., Sze, Y.L., M.K., Fung, W.Y., Wong, E.L. and Fong, L.C.P (2003), Landslide hazard analysis for Hong Kong using landslide inventory and GIS K.T., Computers & Geosciences 30, pp. 429–443.
Khodaei Geshlagh, L. (2011), Assessment of Logistic Regression Method and Analytic Network Process in the Investigation of Landslide Potential in the Axis Range and Reservoir Dam (Case Study: Ghalea Chai Dam), Master's Thesis, Supervisor: Roostaei. Sh., Remote Sensing and GIS, University of Tabriz, pp. 1- 142.
Mohammadi Lord, A. (2009), Analytic Network Prosses in the ANP and Analytical Hierarchy, Tehran Alborz Fardanesh.
Roostaei, Sh. (2004), Evaluation of Landslide Occurrence in Nasir Abad Village Varzeqan (Province of East Azarbayjan) by Using Quantitative Methods, Journal of Humanity, Volume 8, Number 1.
Saaty, T.L. (2004). Mathematical Methods of Operations Research, New York: McGraw.
Sarolee, K.M. (2001),“Statistical Analysis of landslide susceptibility at Yonging, Korea, Environmental Geology, 40, pp. 1095-1113.
Sartipi, A. and Entezam Soltani, E. (2011), Evaluation of Ghalea Chai Dam Landslides, The Thirtieth gatherings of Earth Sciences, Winter. pp. 1 – 7
Van Westen, C.J., Castellanos, E and Kuriakose. S.L. (2008), Spatial data for land slid susceptibility, hazard, and vulnerability assessment an overviwe. Engineering Geology 102, pp. 112 – 131.