ارزیابی نوسان‌های سطح آب دریاچۀ ارومیه و افزایش پهنه‌های نمکی در منطقۀ شمال غرب ایران

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکتری ژئومورفولوژی دانشگاه محقق اردبیلی

2 دانشیار ژئومورفولوژی دانشگاه محقق اردبیلی

چکیده

   تغییرات شدید آب‌وهوایی، کاهش مقدار بارندگی، استفاده از آب‌های زیر‌زمینی برای مصارف انسانی و صنعتی، سبب نواسان‌ها و تغییرات خطوط ساحلی و از همه مهم‌تر، موجب افزایش پهنه‌های نمکی در منطقة شمال غرب ایران شده است. هدف اصلی این پژوهش، بررسی تغییرات سطح آب دریاچة ارومیه و پهنه‌های نمکی اطراف آن است؛ برای نیل به این هدف، تصاویر ماهواره‌ای چند‌طیفی ماهوارة لندست (1989-2011)، سنجنده‌هایTM و ETM+ همگام با یافته‌ها و برداشت‌های میدانی، پردازش شد. به‌منظور شناسایی و ارزیابی وضعیت تغییرات محیطی رخ‌داده در منطقة پژوهش، ابتـدا در مرحلـة پـیش‌پـردازش، تصـحیح‌های هندسی و رادیومتریک بر روی تصاویر اعمال شد. برای شناسایی و استخراج تغییرات خطوط ساحلی از روش آشکار‌سازی تغییرات تفریق باندی و برای بررسی مقدار تغییرات کاربری اراضی از روش طبقه‌بندی نظارت‌شده، با الگوریتم بیشترین احتمال استفاده شد. از مزایای استفاده از داده‌های ماهواره‌ای و روش‌های دورسنجی، افزایش دقت نتایج و صرفه‌جویی در هزینه و زمان است. نتایج، نشان‌دهندة کاهش ارتفاع سطح آب دریاچه بین 6 تا 40/7 متر است؛ به‌طور تقریبی حدود 64/31 درصد از مساحت آبی و نیز حدود 06/2 درصد از مساحت پوشش گیاهی منطقه کاسته و به همان اندازه، بر مقدار ماسه‌های نمکی و نمکزارها افزوده شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Urmia Lake Water Level Fluctuations and Increase in Salt Areas in the North West Iran

نویسندگان [English]

  • Mohammad Hossein Fathi 1
  • Aghil Madadi 2
  • Ebrahim Beheshti 1
  • Nader Sarmasty 1
1 PhD Candidate in Geomorphology, Mohaghegh Ardabil, University Ardabil, Iran
2 Assistant Professor of Geomorphology, Mohaghegh Ardabili University, Ardabil, Iran
چکیده [English]

Introduction
Urmia Lake in the northwestern corner of Iran is one of the largest permanent hyper saline lakes in the world and the largest lake in the Middle East. It is extended as much as 140 km from north to south and is as wide as 85 km east to west during high water periods. Qualitative and quantitative degradation of water resources is one of the major challenges in the way of sustainable development. The features and phenomena in the earth surface have been changed over time; the lakes as one of these features and due to a closed environment are not considered as an exception. Due to climatic changes such as reduced rainfall, increased temperature and also uncontrolled use of surface water resources in watershed areas, distinguished changes are exposed on the earth surface. Monitoring such changes should be considered as an important issue in the national and regional development and natural resource management. Monitoring the coastal areas and extraction of water at different intervals is currently regarded as an infrastructural research interest due to the significance of coastal zone management and dynamic nature of such sensitive ecological environments. Urmia lake is the twentieth largest lake of the world and at the same time one of the most unique and invaluable global water ecosystems. The lake surface area was estimated to have an area as large as 5620 km2but since 1989 it has generally been declining and was estimated from satellite data to be only 2032 km2 in August 2011. The decline is generally resulted from a combination of drought, increased water diversion for irrigated agriculture within the lake’s watershed and also mismanagement. The main insight of this study is to analyze Urmia water levels fluctuation and increase in salt area. This is to model the lake surface fluctuation regime by linking the observed data to satellite data in the northwest Iran.
 
Materials and Methods
Lake Urmia is an endorheic or terminal lake that is water leaves the lake only by evaporation. As is generally the case, this leads to a saltwater body and in the case of Lake Urmia salinity is quite high. The lake is bounded between 37°5´ -38°16´ latitudes and 45°01´ - 46° longitudes at 1275 m above sea level. Its surface area ranges from 4750 to 6100 km2 and the average and greatest depths are 6 and 16 m, respectively. In order to study the fluctuations of the Urmia Lake surface area, multi temporal Land sat Images, ETM and TM, were used in a 23-year period, from 1989 to 2011. In the present study, the coastlines information was extracted for each year in two major steps using the ERADS and ArcGIS software. Firstly, geometric and radiometric corrections as well as different filters were applied on the selected images to make the spectral difference of the objects more clear. Secondly, supervised classification method has been used to extract the coastlines. To use the supervised classification, training data from the lake surface has been prepared for further process. The reflection values in these areas have been generalized to the entire lake surface using the software. Thus, the border between the lake and surrounding areas has been set precisely. Finally, through the algorithm for conversion of the two vectors, the coastline limits have been drawn for different years. ArcGIS application has been used for analysis of the images.
 
Results and Discussion
Satellite altimeter data measured the lake’s level in 1989 to be at its highest level of any time in the past 30 years. This is in agreement with Hassanzadeh and others (2011) who mentioned water level of about 1278 m above sea level for the same time. Both the measures show a steady decline from that year on with the most recent satellite altimeter data indicating a drop of approximately 7.40   meters between 1989 and 2011. Because Lake Urmia is a terminal lake with no significant water outflow the only way water leaves the lake is by evaporation. Therefore, if the lake is declining, it is either by increased evaporation or a decrease in water coming into the system. The Zarrineh Rood River is the largest of the thirteen main rivers discharging into the Lake Urmia. The rivers are the source of majority of the Lake water budget. Additional input comes from rainfall directly over the lake, floodwater from the immediate watershed, and a very small fraction from groundwater flow.
 
Conclusion
The main objective of this study was to assess lake water levels fluctuation using satellite images and Geographic Information System (GIS). To achieve this goal, the satellite images of Landsat Multi-spectral images for the years 2011-1989, sensors of TM, ETM +, were used and processed along with field observations. Based on the results achieved during the 23-year-old, average height of the lake water level decreased 7.40 meter. Vast area of the lake surface turned into the arid soil and sediment salts in the last few decades. Most changes due to water loss, especially in the South East and the east coast of the lake is visible.

کلیدواژه‌ها [English]

  • coastline changes
  • salt area
  • Satellite image
  • Urmia Lake
  • water level fluctuations
  1. رسولی ع.، عباسیان، ش. و جهانبخش، س. (1387). «پایش نوسان‌های سطح آب دریاچة ارومیه با پردازش تصاویر ماهواره‌ای چند‌سنجنده‌ای و چند‌زمانی». فصلنامة مدرس علوم انسانی، ش 2. ص 5.
  2. رسولی ع.‌ا. و محمودزاده، ح. (1389). مبانی سنجش از دور دانش پایه. تبریز: علمیران. ص 191.
  3. سرمستی، ن. (1388). بررسی قابلیت سنجنده‌های LISSIII و ASTER برای ارزیابی نمکزارهای ایران و امکان کالیبراسیون آنها، پایان‌نامة کارشناسی ارشد به راهنمایی دکتر سیدکاظم علوی‌پناه، تهران: دانشگاه تهران. دانشکدة جغرافیا. ص 59.
  4. ﺷﺎﻳﺎن، س. و ﺟﻨﺘﻲ، م. (1386). «ﺷﻨﺎﺳﺎﻳﻲ ﻧﻮﺳﺎﻧﺎت ﻣﺮز ﭘﻴﺮاﻣﻮﻧﻲ و ﺗﺮﺳﻴﻢ ﻧﻘﺸة ﭘﺮاﻛﻨﺶ ﻣﻮاد معلق درﻳﺎچة اروﻣﻴﻪ ﺑﺎ اﺳﺘﻔﺎده از ﺗﺼـﺎوﻳﺮ ﻣـﺎﻫﻮاره‌ای (ﺳـﻨﺠﻨﺪه‌ﻫـﺎی TM، LISS III و ETM+)». ﻣﺠﻠـة ﭘـﮋوﻫﺶ‌ﻫـﺎی ﺟﻐﺮاﻓﻴـﺎﻳﻲ. زﻣﺴﺘﺎن 86. ش 62. ص25-39.
  5. علوی‌پناه، س.ک. (1382). کاربرد سنجش از دور در علوم زمین (علوم خاک). تهران: مؤسسۀ انتشارات دانشگاه تهران. ص 478.
    1. Arias, A.H., Piccolo, M.C., Spetter, C.V., Freije, R.H. and Marcovecchio, J.E. (2012). "Lessons From Multi-decadal Oceanographic Monitoring at an Estuarine Ecosystem in Argentina". Int. J. Environ. Res. Vol. 6. No. 1. PP. 219-234.
    2. Baghvand, A., Nasrabadi, T., Nabi Bidhendi G.R., Vosoogh, A., Karbassi, A.R., and Mehrdadi N. (2010). "Groundwater quality degradation of an aquifer in Iran central desert. Desalination". Vol. 1. No. 3. PP. 264-275.
    3. Bayram B., Bayraktar H., Helvaci, C. and Acar, U. (2004). Coast line change detection using corona, SPOT and IRS ID Images .Turkey: Istanbul.
    4. Berberoglu. S, Akin. A. (2009). "Assessing different remote sensing techniques to detect land use/cover changes in the eastern Mediterranean". International Journal of Applied Earth Observation and Geo information. Vol. 11. PP. 46–53.
    5. Golabian, H. (2010). "Urumia Lake: Hydro-Ecological Stabilization and Permanence Macro-engineering Seawater in Unique Environments". pp. 365-397. Berlin: Springer-Verlag. Doi: 10.1007/978-3-642-14779-1_18.
    6. Hassanzadeh, E., Zarghami, M. and Hassanzadeh, Y. (2012). "Determining the Main Factors in Declining the Urmia Lake Level by Using System Dynamics Modeling. Water Resources Management". 26 (1). 129-145. doi: 10.1007/s11269-011-9909-8.
    7. Hudak, P.F.(2011). "Spatial Distribution of Solutes in Aquifer Outcrop Zones along the Brazos River. East-Central Texas". Int. J. Environ. Res.. Vol. 5. No. 3. PP. 595-602.
    8. Jensen, J.R. (1996). Introductory Digital Image Processing: A Remote Sensing Perspective. Second Edition. Prentice-Hall. Upper Saddle River New Jersey. pp. 316.
    9. Kaichang, D., Ruijin, M., Jue, W. and Ron, L. (2004). Coastal Mapping and Change Detection Using High-Resolution IKONOS Satellite Imagery. Japan: Ohio.
    10. Kavian, A., Fathollah-Nejad, Y., Habib-nejad, M. and Soleimani, K. (2011). "Modeling Seasonal Rainfall Erosive on a Regional scale: A case Study from Northeastern Iran". Int. J. Environ. Res.. Vol. 5. No. 4. PP. 939-950.
    11. Macleod, R.S and Congalton, R.G. (1998). "a quantitative comparison of change detection algorithms for monitoring eelegrass from remotely sensed data". Photogrammetric and Remote Sensing of Environment. Vol. 8. PP. 127-150.
    12. Nasrabadi T., Nabi-Bidhendi, G.R., Karbassi, A.R. and Mehrdadi, N. (2010). "Evaluating the efficiency of sediment l pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin". Environmental monitoring and assessment. Vol. 1. No. 4. PP. 395-410.
    13. Nazm-far, H., Fathi, M.H., Sarmasty, N. and KHaliji, M.A. (2013). "Monitoring changes in multi-spectral and multi-temporal satellite data processing Sefidrud Delta". SMPR. 2nd ISPRS International Conference. Tehran. Iran.
    14. Rasouli, A.A. (2008). Fundamentals of Applied Remote Sensing With emphasis on satellite image processing. vol. 1. (In Persian).
    15. Rasouli, A.A., Abbasi, S.H., and Jahanbakhsh, S. (2008). "Monitoring of lake water level fluctuations Snjdhay processing multi-satellite and multi-time, humanities instructor Quarterly". No. 2. pp. 53. (In Persian).
    16. Rasouli, A.A. and Mahmoud-Zadeh, H. (2011).Principles of remote sensing knowledge base.Tabriz: Elmiran. p 191.
    17. Rasouly, A.A., Naghdifar, R. and Rasoli, M. (2010). "Monitoring of Caspian Sea Coastline Changes Using Object-Oriented Techniques". Procedia Environmental Sciences. No. 2. pp. 416–426.
    18. Roshan, G.R., Mohammadi, H., Nasrabadi, T., Hoveidi, H. and Baghvand, A. (2007). "The Role of Climate Study in Analyzing Flood Forming Potential of Water Basins". International Journal of Environmental Research. Vol.1. No. 3. PP. 231-236.
    19. Sadati-pour, S.M.T., Kiamehr, R. and Sharifi, A.R. (2012). "The Evaluation of Sea Surface Topography Models based on the Combination of the Satellite altimetry and the Global Geoid Models in the Persian Gulf". Int. J. Environ. Res.. Vol. 6. No. 3. PP. 645-652.
    20. Sarmasty, N. (2008). investigate the ability of LISSIII and ASTER  sensors to measure Saltdom of Iran and the possibility of their calibration. Thesis. Supervisor: doctor Sayed Kazem Alavi shelter. Faculty of Geography. Tehran University. p. 59.
    21. Shayan, S. and Jannati, M. (1386). "Identifying the volatility perimeter borders and map the distribution of suspended material Urmia Lake using satellite imagery .(Landsat and TM, LISS III and ETM +)". Journal of Geography. Winter 86. No. 62. pp. 39-25. (in Persian).
    22. Tucker, C. (1979). "Red and photographic infrared linear combinations for monitoring vegetation". Remote Sensing of Environment. Vol. 8. pp. 127-150.
    23. Xia Zhen hen. (1999). "Using multi-temporal remotely sensed data to study the coastline Evolution in Dayanan area". http://www.gisdevelopment.net. 1999.
    24. Ying, J. F., Xin, Ch. and Cheng, L.A. (2011)." A Comparative Study on the Growth and Nutrient Uptake Characteristics of Fifteen Wetland Species in Taihu Lake Region of China". Int. J. Environ. Res.. Vol. 5. No. 2. PP. 361-370.
    25. Zarghami, M. (2011). "Effective watershed management; Case study of Urmia Lake, Iran, Lake and Reservoir Management". Vol. 27. No. 1. PP. 87-94.
    26. www.sealevel.jpl.nasa.gov/mission/jason_1.html,w.jason.oceanobs.com
    27. Http://www.sealevel.jpl.nasa.gov/mission/jason_1.html,w.jason.oceanobs.com
  1. Alavi Panah, S.K. (2002). the application of remote sensing of Earth Sciences (Soil Science).Tehran: University of Tehran Press. p. 478.
  2. Alesheikh, A.A., Ghorbanali, A. and Nouri, N. (2007). "Coastline change detection using remote sensing". International journal of Environmental Science and Technology. Vol.4. No.1. pp. 61-66.
  1. Karbassi, A.R., Mir-Mohammad Hosseini, F., Baghvand, A. and Nazariha, M. (2011). "Development of Water Quality Index, WQI, for Gorganrood River". Int. J. Environ. Res. Vol. 5. No. 4. PP. 1041-1046.
  1. Mir-bagheri, S.A., Sadr-nejad, S.A. and Hashemi-Monfared, S.A., (2012). "Phytoplankton and Zooplankton Modeling of Pishin Reservoir by Means of an Advection-Diffusion Drought Model". Int. J. Environ. Res. Vol. 6. No. 1. PP. 163-172.
  2. Mortazavi, M.S. and Sharifian, S. (2011). "Mercury Bioaccumulation in Some Commercially Valuable Marine Organisms from Mosa Bay, Persian Gulf". Int. J. Environ. Res. Vol. 5. No. 3. PP. 757-762.
  3. Najafi, A. (2003). "Investigation of the Snowmelt Runoff Orumiyeh – Region Using Modeling GIS and RS- Techniques". International– Institute for Geo- Information Science and Observation Enchede The Netherland.
  1. UNEP and GEAS (2012). "the drying of Iran’s Lake Urmia and its environmental consequences". Environmental Development 2(1): 128-137
  2. UNESCO (no date). "UNESCO-MAB Biosphere Reserves Directory. 24 January 24, 2012".at: http://www.unesco.org/mabdb/br/brdir/directory/biores.asp?mode=gen&code=IRA+07.