تعیین الگوریتم بهینه برای پهنه‌بندی یخبندان‌های بهاره و پاییزه در استان کردستان با استفاده از تصاویر NOAA-AVHRR

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 دانشیار گروه جغرافیا، دانشگاه رازی کرمانشاه

2 کارشناسی ارشد اقلیم‌شناسی، گروه جغرافیا، دانشگاه رازی کرمانشاه

3 استادیار گروه جغرافیا، دانشگاه رازی کرمانشاه

چکیده

یخبندان پدیدۀ زیان‌بار اقلیمی است که فعالیت‌های مختلف انسانی و فرایندهای زیستی را تحت تأثیر قرار ‌می‌دهد. تصاویر ماهواره‌ای به‌دلیل پیوستگی و تکرار‌پذیری داد‌ه‌های آن، روش مناسبی برای بررسی یخبندان است. در این پژوهش با استفاده از تصاویرNOAA-AVHRR  به تعیین الگوریتم بهینه برای شناسایی و استخراج پهنه‌های یخبندان بهاره و پاییزه در استان کردستان در سال‌های 2001 تا 2010 پرداخته شده است. پس از تعیین روزهای یخبندان در هفت ایستگاه هواشناسی منطقه، 24 تصویر گذر شبانه برای بررسی دما و صد تصویر گذر روزانه برای محاسبة شاخص NDVI و قابلیت انتشار انتخاب و ارزیابی شد. برای محاسبة دمای سطح زمین، باندهای حرارتی چهارم و پنجم تصاویر گذر شبانه در سه الگوریتم پرایس، کول و اولیویری به‌کار گرفته شد. براساس نتایج، الگوریتم کول در برآورد دمای سطح زمین به‌دلیل خطای کمتر و نیز همبستگی‌های قوی و معنی‌دار در مقایسه با دماهای مشاهداتی، عملکرد بهتری نسبت به دیگر الگوریتم‌ها داشت. بنابراین، این الگوریتم در تهیۀ نقشه‌های نهایی پهنه‌بندی یخبندان استان کردستان استفاده شد. نگاه کلی به نقشه‌ها، تأثیر مهم ارتفاعات را بر وقوع یخبندان‌های شبانه در منطقه -هم از نظر شدت و هم از نظر گسترش- به‌خوبی نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal Algorithm for Zonation of Spring and Autumn Frosts in Kurdistan Province, Using NOAA-AVHRR Images

نویسندگان [English]

  • Firouz Mojarrad 1
  • Mohammad Ramyar Yousefnejad 2
  • Amanollah Fathnia 3
1 Associate Professor Climatology, Geography Department, Razi University, Kermanshah, Iran
2 MA in Climatology, Geography Department, Razi University, Kermanshah, Iran
3 Assistant Professor, Geography Department, Razi University, Kermanshah, Iran
چکیده [English]

Introduction
Frost as a harmful climatologic phenomenon affects various human activities and biological processes. Due to mountainous nature of Kurdistan Province as the study area of this research in one hand and type and diversity of effective air masses on the other, the frequency, severity and duration of this phenomenon in the province are outstanding. Confronting frost could be one of the major programs of the province authorities especially in the agricultural sector. Satellite images can be a good way to study the frost because of the continuity and repeatability of the relevant data. With the previous studies and the lack of researches related to the frost and estimation of land surface temperature by satellite images in the country, this study aims at determining the optimal algorithm in order to study and extract the earth's surface frost zones in the spring and autumn in the region using night-time images of the AVHRR sensor.
 
Materials and Methods
The study area in this research is the Kurdistan Province located in the west of Iran. To do this, the daily temperature data from seven weather stations of the region in a 10-year period (2001-2010) were used. After the spring and autumn frost dates were determined in the stations, 24 night-time images were taken from NOAA satellite website, and their thermal bands (AVHRR channels 4 and 5) were used to calculate the temperature. Then, the satellite images were corrected geometrically by ENVI software using GCP files of images, and after that radiometric calibration was performed by histogram equalization method. Likewise, thermal band radiances and brightness temperatures were calculated. To calculate the surface emissivity (ε), the land-use layer must be taken into account. NDVI values were used in this study so that 10 daily images for each year (5 images for spring and 5 images for autumn) in total 100 images for the study period were taken and accordingly, NDVI values were calculated for the images. After eliminating the cloudiness effect and calculating the surface emissivity, land surface temperature equation was applied to the images with the surface emissivity. From the proposed various techniques for calculating the surface temperatures, the Split-Window Technique (SWT) was used in this research and finally, three algorithms were used for calculating the night-time temperatures namely Price (1984: 7236), Coll et al. (1994: 113) and Ulivieri et al. (1994: 62). The equations used in the mentioned algorithms were applied to the images using ERDAS software. The last step in the study was to validate the estimates by comparing the temperatures derived from satellite images with recorded ones at the weather stations using three indexes, namely Mean Absolute Error (MAE), Mean Bias Error (MBE) and Root Mean Square Error (RMSE), and consequently, calculating the correlation coefficients between these two temperature series.
 
Results and Discussion
Land surface temperatures in the Kurdistan Province were estimated using NOAA satellite images by Price, Coll, and Ulivieri algorithms. The resultant error values from MAE, MBE and RMSE indexes indicated a better match between temperatures derived from Coll algorithm and the observed ones in the weather stations. Observed and estimated temperatures based on Coll algorithm at the stations for all of the 24 selected images were presented in a table. After doing corrections and applying various algorithms on the satellite images, temperature zoning maps were prepared to extract and analyze the frost zones. The number of these maps was equivalent to the number of used images, i.e. 24. In some images there were pixels, identified as white color, without any information. Coll algorithm's temperature estimation errors in the stations is ranged from -0.1° to 6.3°C according to MAE, MBE and RMSE indices. Statistically significant correlations were also found at the 0.01 level between observed and estimated temperatures at Sanandaj, Marivan, Bijar and Zarrineh-obato stations, and at the 0.05 level of confidence at Saghez, Ghorveh and Baneh stations.
 
Conclusion
NOAA satellite data are used by scientists and researchers of different fields to separate temperature zones because of their appropriate temporal, spatial and spectral resolution. In this study, we tried to analyze the spring and autumn frosts in the Kurdistan Province using NOAA-AVHRR images, and prepare zoning maps derived from the optimal algorithm. Out of the three algorithms used to estimate the land surface temperature, Coll algorithm led to better results. The use of NDVI index in calculating the surface emissivity was also helpful in estimating the temperature. It is noteworthy that in all three algorithms, temperature estimates at Sanandaj, Marivan and Saghez stations- which have lower altitudes- were better than the elevated stations like Zarrineh-obato, Ghorveh and Bijar. There seems to be a direct or indirect relationship between the altitude and the accuracy of estimation. This needs to be investigated. Generally the elevation role in the occurrence of night-time frost in the province is obvious, both in terms of intensity and development.

کلیدواژه‌ها [English]

  • Kurdistan province
  • NOAA-AVHRR Images
  • spring and autumn frosts
  • zoning
  1. جهانبخش، س.، زاهدی، م. و ولیزاده کامران، خ. (1390). «محاسبة دمای سطح زمین با استفاده از روش سبال و درخت تصمیم‌گیری در محیطRS  و GIS در بخش مرکزی منطقة مراغه». جغرافیا و برنامه‌ریزی. دورۀ 16. ش38: 42-19.
  2. رحیمی‌خوب، ع.، کوچک‌زاده، م.، محمد‌ولی سامانی، ج. و شریفی، ف. (1384). «ارزیابی چند روش برآورد دمای سطح زمین با استفاده از تصاویر ماهوارۀ NOAA در حوزۀ آبریز دریاچة ارومیه». پژوهش و سازندگی در زراعت و باغبانی. ش68: 90-84.
  3. علوی‌پناه، س.ک. (1387). سنجش از دور حرارتی و کاربرد آن در علوم زمین. چ2. تهران: مؤسسة انتشارات دانشگاه تهران.
  4. علیجانی، ب.، محمودی، پ، ریگی چاهی، ا.ب. و خسروی، پ. (1389). «بررسی تداوم روزهای یخبندان در ایران، با استفاده از مدل زنجیرۀ مارکوف» پژوهش‌های جغرافیای طبیعی. ش73: 20-1.
  5. فرج‌زاده، م.، فتح‌نیا، ا.، علیجانی، ب. و ضیائیان، پ. (1390). «ارزیابی اثر عوامل اقلیمی بر پوشش گیاهی منطقۀ زاگرس با استفاده از اطلاعات رقومی ماهواره‌ای». تحقیقات مرتع و بیابان ایران. ج18. ش1: 123- 107.
  6. فرجی‌ سبکبار، ح.ع. و عزیزی، ق. (1385). «ارزیابی میزان دقت روش‌های درون‌یابی فضایی، مطالعۀ موردی: الگوسازی بارندگی حوزۀ کارده مشهد». پژوهش‌های جغرافیایی. ش58: 15-1.
  7. کوران، پ. (1374). اصول سنجش از دور. ترجمۀ رضا حائز. چ2. تهران: مؤسسۀ انتشارات امید.
  8. محمدی، ح. و گزل‌خو، م. (1389). «تأثیر یخبندان‌های زودرس پاییزه و دیررس بهاره بر کشت غلات در شهرستان کرج». فصلنامۀجغرافیاییسرزمین. س7. ش27: 109-93.
    1. Alavipanah, S.K. (2008). Thermal Remote Sensing and its Application in Geosciences. 2nd Edition. Tehran: University of Tehran Press. (In Persian).
    2. Alijani, B., Mahmoudi, P., Rigi Chahi, A.B. and Khosravi, P. (2011). "Investigation of the Persistence of Frost Days in Iran using Chain Markov Model". Physical Geography Research Quarterly. Vol. 42. No. 73: 1-19. (In Persian).
    3. Becker, F. and Li, Z.-L. (1990). "Towards a Local Split Window Method over Land Surfaces. International Journal of Remote Sensing. No. 11: 369-394.
    4. Coll, C., Casselles, V., Sobrino, J.A. and Valor, E. (1994). "On the Atmospheric Dependence of the Split-Window Equation for Land Surface Temperature". International Journal of Remote Sensing. Vol. 15: 105-122.
    5. Curran, P. (1995) Principles of Remote Sensing. Translated by Haez, R.. 2nd Edition. Tehran: Omid Press. (In Persian).
    6. Dalezios, N.R., Lavrediadou, E.E. (1995). "Features of Frost-Affected Areas from Digital Meteosat IR Images". Advances in Space Research. Vol. 15. No. 11: 123-126.
    7. Faraji Sabokbar, H.A. and Azizi, Gh. (2007). "The Precision of Spatial Interpolation Methods, Case Study: Rainfall Modeling in Kardeh Basin of Mashhad". Geographical Research Quarterly. No. 58: 1-15.
    8. Farajzadeh, M., Fathnia, A.A., Alijani, B. and Zeaiean, P. (2011). "Assessment of Climatic Factors Effect on Vegetation in the Zagross Region Using Satellite Images". Iranian Journal of Range and Desert Research. Vol. 18. No. 1: 107-123. (In Persian).
    9. Francois, C., Bosseno, R., Vacher, J.J. and Seguin, B. (1999). "Frost Risk Mapping Derived from Satellite and Surface Data over the Bolivian Altiplano". Agricultural and Forest Meteorology. No. 95: 113- 137.
    10. Jahanbakhsh, S., Zahedi, M. and Valizadeh Kamran, K. (2012). "Land Surface Temperature Calculation Using SEBAL and Decision Tree Methods Based on ETM + Image in RS, GIS Environment in the Maragheh Central Region'. Quarterly Journal of Geography and Planning. Vol. 16. No. 38: 19-42. (In Persian).
    11. Kalma, J.D., Byrne, G.F., Johnson, M.E., Laughlin, G.P. (1983). "Frost Mapping in Southern Victoria: An Assessment of HCMM Thermal Imagery". International Journal of Climatology. Vol. 3. No. 1: 1-19.
    12. Kerdiles, H., Grondona, M., Rodriguez, R. and Seguin, B. (1996). "Frost Mapping Using NOAA AVHRR Data in the Pampean Region, Argentina. Agricultural and forest Meteorology. Vol. 79: 157-182.
    13. Kerr, Y.H., Lagouarde, J.P. and Imbernon, J. (1992). "Accurate Land Surface Temperature Retrieval From AVHRR Data with Use of an Improved Split Window Algorithm". Remote Sensing of Environment. Vol. 41. No. 2-3: 197-209.
    14. Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.F. and Sobrino, J.A. (2013). "Satellite-Derived Land Surface Temperature: Current Status and Perspectives". Remote Sensing of Environment. No. 131: 14-37.
    15. McMillin, L.M. (1971). "A Method of Determining Surface Temperatures from Measurements of Spectral Radiance at two Wavelengths". Ph.D. Dissertation. Iowa State University. (Available from University Microfilms International, P. O. Box 1764, Ann-Arbor, MI 48106).
    16. Mohammadi, H. and Gozalkhoo, M. (2010). "Effects of Early Autumn and Late Spring Frosts on Planting Cereals in Karaj County. Geographical Journal of Territory (Quarterly). Vol. 7. No. 27: 93-109. (In Persian).
    17. Otlle, C. and Stoll, M.P. (1993). "Effect of Atmospheric Absorption and Surface Emissivity on the Determination of Land Surface Temperature From Infrared Satellite Data". International Journal of Remote Sensing. No. 14: 2025-2037.
    18. Price, J.C. (1984). "Land Surface Temperature Measurements from the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer". Journal of Geophysical Research. Vol. 89. No. D5: 7231-7237.
    19. Qin, Z. and Karnieli. A. (1999). "rogress in the Remote Sensing of Land Surface Temperature and Ground Emissivity Using NOAA-AVHRR data". International Journal of Remote Sensing. Vol. 20. No. 12: 2367-2393.
    20. Rahimi khoob, A., Kouchakzade, M., Mohammadvali Samani, J. and Sharifi, F. (2005). "Estimating Maximum Daily Temperature Using NOAA Satellite Images: Case Study in Oroomieh Lake Basin". Pajouhesh & Sazandegi. No. 68: 84-90. (In Persian).
    21. Rosenberg, N.J. and Myers, R.E. (1962). "The Nature of Growing Season Frosts in and Along the Platte Valley of Nebraska". Monthly Weather Review. No. 90: 471-479.
    22. Sobrino, J.A., Raissouni, N. and Li., Z.-L. (2001). "A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data". Remote Sensing of Environment. Vol. 75. No. 2L: 256–266.
    23. Tait, A. and Zheng, X. (2003). "Mapping Frost Occurrence Using Satellite Data". Journal of Applied Meteorology. Vol. 42. No. 2: 193-203.
    24. Ulivieri, C., Castronuovo, M.M., Francioni, R. and Cardillo, A. (1994). "A Split-Window Algorithm for Estimating Land Surface Temperature from Satellites". Advances in Space Research. Vol. 14. No. 3: 59-65.
    25. Van de Griend, A.A. and Owe, M. (1993). "On the Relationship Between Thermal Emissivity and the Normalized Difference Vegetation Index for Natural Surfaces". International Journal of Remote Sensing. Vol. 14. No. 6: 1119-1131.
    26. Vázquez, D.P., Reyes, F.J.O. and Arboledas, L.A. (1997). "A Comparative Study of Algorithms for Estimating Land Surface Temperature from AVHRR Data". Remote Sensing of Environment. No. 62: 215-222.
    27. Wenbin, Z., Aifeng, L. and Shaofeng, J. (2013). "Estimation of Daily Maximum and Minimum air Temperature Using MODIS Land Surface Temperature Products". RemoteSensing of Environment. No. 130: 62-73.