نقشه‌بندی فرسایندگی باران در استان کرمان با روش‏ های زمین‏ آماری

نوع مقاله : مقاله کامل

نویسندگان

1 دانشیار دانشگاه علوم کشاورزی و منابع طبیعی ساری، گروه آبخیزداری

2 دانشیار دانشگاه علوم کشاورزی و منابع طبیعی ساری، گروه مرتعداری

3 دانشجوی دکتری آبخیزداری دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

این پژوهش با هدف تعیین شاخص فرسایندگی باران (EI30) در اقلیم نیمه‌خشک استان کرمان انجام گرفت. بدین منظور برای مناطق فاقد ایستگاه‌های باران‌نگار از تحلیل رگرسیونی بین این شاخص و بعضی شاخص‌های زودیافت برای 17 ایستگاه مجهز به باران‌نگار استفاده شد. مناسب‌ترین رابطة رگرسیونی بر مبنای شاخص متوسط حداکثر بارندگی ماهانه به میزان (882/0R2= ) بود. سپس، با بررسی تمامی ایستگاه‌های هواشناسی در استان کرمان (آمار شدت و روزانة بارندگی)، 135 ایستگاه با بیش از 20 سال آمار برای تهیة نقشة فرسایندگی باران انتخاب شد. نتایج نشان داد حداکثر و حداقل شاخص مورد نظر به ترتیب برابر با 74/213 و 91/24 مگاژول- میلی‌متر بر هکتار در ساعت و در سال برای ایستگاه‌های سلطانی و دولت‌آباد اسفندقه بود. در نهایت، با استفاده از تکنیک ارزیابی متقابل، روش زمین‌آماری کریجینگ ساده مناسب‌ترین روش پهنه‌بندی انتخاب و نقشة پهنه‌بندی شاخص فرسایندگی باران برای استان کرمان در نرم‌افزار ArcGIS 10.3 تهیه شد. نتایج نشان داد مقدار این شاخص در غرب و جنوب‌غربی استان دارای بیشترین و در شرق، جنوب و شمال استان دارای کمترین مقدار است. همچنین، معادلات مربوط به همبستگی شاخص‌های مورد بررسی با شاخص EI30 به‌دست آمد که نشان‌دهندة همبستگی قوی این شاخص با شاخص‌های زودیافت بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Rainfall Erosivity Mapping in Kerman Province based on Geostatistical Methods

نویسندگان [English]

  • Ataollah Kavian 1
  • Zeinab Jafarian 2
  • Afshin Jahanshahi 3
  • Mohammad Golshan 3
1 Associate Professor, Sari Agricultural Sciences and Natural Resources University, Department of Watershed Management, Iran
2 Associate Professor, Sari Agricultural Sciences and Natural Resources University, Department of Range Management, Iran
3 PhD Candidate, Sari Agricultural Sciences and Natural Resources University, Department of Watershed Management, Iran
چکیده [English]

Introduction
Rainfall erosivity, the propulsion or power of causing erosion in separation and transport of soil particles, is in relation to water erosion. Rainfall erosion is causing loss of soil, damage to agriculture and infrastructures which is followed by water pollution. Changes in rainfall patterns exacerbate risk of erosion globally. Rainfall erosivity plays an effective role in soil erosion and represents potential erosion in the study areas. Following the rainfall erosion, all types of water erosion can be occurred. Consequently, it not only makes soil to be eroded but also lead to filling of dam reservoirs, channels, water pollution and ecological changes. Regarding these mentioned problems, it is necessary to investigate various aspects of water erosion. Under the same condition, rate of soil loss is directly proportional to the rainfall erosivity. This can be expressed as erosivity factors which are based on rainfall characteristics. Various researchers have attempted to provide factors that are based on rainfall characteristics using simultaneous measurement of soil splash (or soil loss) and rainfall characteristics to determine relationships between them. Various factors have been proposed throughout the world. These factors are different because of geographical location, scale, local conditions and type of instruments. The concept of rainfall erosivity was proposed by wischmeier and smith (1958) in order to consider the effects of climate on soil erosion. Rainfall erosivity can be determined either using direct measurements or appropriate factors. Direct measurement method is a suitable method to determine rainfall erosivity which is done by measuring the amount of splashed soil. Event-based measurement of erosivity of rainfall for broad area is difficult and time-consuming. Therefore, researchers have attempted to provide factors that are based on rainfall characteristics using simultaneous measurement of soil loss and rainfall characteristics and relationships between them. For different areas, rainfall erosivity can be determined using these characteristics without direct measurement. In general, rainfall erosivity factors can be divided into two groups: 1) factors based on energy and intensity of rainfall; 2) factors based on readily available data. One of the most famous factors is EI30 which is based on kinetic energy and intensity of rainfall. One limitation in using this factor and also other factors which are based on rainfall erosivity is that they need long-term data (>20years) recorded with short intervals. Such data are recorded in the stations equipped with rain gauge. Therefore, due to lack of these long-term data, researchers have proposed factors that use available rainfall data (i.e., daily and monthly data). This recent factors are computed based on regional sediment analysis or its relationship with EI30.The purpose of this study is to prepare rainfall erosivity map for Kerman province with semi-arid climate and to determine the most suitable interpolation method. Although such a map has been produced by Nicknami (2014) for Iran, it's not available for Kerman specifically.
 
Material and Methods
This study was carried out in Kerman province. The province has an area of181714 square kilometers and is located in the southeastern Iran. Kerman covers more than 11 percent of the area of Iran. It is the largest province in terms of land area which is located in the southeast part of the Central Plateau. In order to estimate EI30 index for the areas without rain gauge, the regression analysis were used between this index and some readily available indices of the 17 stations equipped with rainfall stations. Based on average maximum monthly rainfall index, the most fitted regression has R2=0.882. Twenty years data (rainfall intensity & daily rainfall) for all stations (include: Synoptic, Climatology, Evaporation and Rain gauge stations) were used for this study. Outliers were removed by visual surveying of all collected data. Normality of the data distributions was tested using Kolmogorov-Smirnov in SPSS version 22. Finally, 135 meteorological stations and 17 rain gauge stations were chosen.
Conclusion  
The results showed the maximum and minimum index equal to 74.213 and 91.24 (MJ-mm acres per hour) for Soltani and Dolatabad Esfandagheh stations, respectively. Simple kriging method was selected as the most appropriate interpolation method using cross-validation techniques. The zoning map of rainfall erosivity factor was prepared in ArcGIS software. The results also showed the highest rainfall erosivity values for Baft, Bardsir and Sirjan cities (located in southwest of province), and the lowest values for Bam, Jiroft, Kahnouj and Ravar cities (located in east, south and north of province), respectively.

کلیدواژه‌ها [English]

  • cross-validation
  • EI30
  • Kerman province
  • index
  • recording rain gauges
حکیم‌خانی، ش.؛ حکیم‌خانی، ا. (1389). تهیة نقشة فرسایندگی باران برای استان لرستان. فصلنامة پژوهش‌های آبخیزداری (پژوهش و سازندگی)، 89: 62 - 72.
حکیم‌خانی، ش.؛ مهدیان، م.ح.؛ عرب‌خدری، م.؛ قربان‌پور، د. (1384). بررسی فرسایندگی باران در سطح کشور به روش فورنیه. سومین همایش ملی فرسایش و رسوب، پژوهشکدة حفاظت خاک و آبخیزداری، 6-9 شهریور. ص 281 - 288.
رضایی، م.؛ دواتگر، ن.؛ تاجداری، خ.؛ ابولپور، ب. (1389). بررسی تغییرات برخی شاخص‌های کیفی آب‌های زیرزمینی استان گیلان با استفاده از زمین‌آمار. نشریة آب و خاک، 24(5): 932 - 941.
زهتابیان، غ.ر.؛ جان‌فزا، ع.؛ محمدعسکری، ح.؛ نعمت‌الهی، م. ج. (1389). مدل‌سازی توزیع برخی از خصوصیات شیمیایی آب‌های زیرزمینی (مطالعة موردی در حوزة آبخیز گرمسار). فصلنامة مرتع و بیابان، 17(1): 61 - 73. 
شریفان، ح. (1386). بررسی روابط بین ضریب فرسایندگی و پارامترهای مختلف باران در منطقة گرگان. مجلة علوم کشاورزی و منابع طبیعی، 4(4): 207 - 215.
صادقی، س.ح.ر. (1383). بررسی تغییرات مکانی شاخص فرسایندگی در استان مازندران. طرح پژوهشی سازمان مدیریت و برنامه‌ریزی.
علی‌پور، ز.ت.، مهدیان، م.ح.؛ حکیم‌خانی، ش.؛ سعیدی، م. (1389). محاسبه و برآورد شاخص‌های EI30، Lal، هادسون و Onchev در حوضة دریاچة نمک. مجلة علوم کشاورزی دانشگاه آزاد اسلامی واحد تبریز، 4، ویژه‌نامة 1 (4): 141 - 157.
علی‌پور، ز.ت.؛ مهدیان، م.ح.؛ پذیرا، ا.؛ حیدری‌زاده، م.؛ رحیمی بندرآبادی، س.؛ سعیدی، م. (1389). مقایسة کارایی روش‌های معمول زمین‌آماری با روش فازی کریجینگ در تهیة نقشة هم‌فرسایندگی باران در حوزة آبخیز دریاچة نمک. فصلنامة پژوهش‌های آبخیزداری (پژوهش و سازندگی)، 86: 32 - 41.
قربان‌پور، د. (1383). مطالعه و برآورد شاخص فرسایندگی باران (R) در مازندران، پایان‌نامة کارشناسی‌ارشد آبخیزداری، دانشگاه مازندران، 88 ص.
محمدی، ج. (1377). تهیة نقشة فرسایندگی باران در ایران با استفاده از شاخص فورنیه و روش آماری کریجینگ. مجلة علوم کشاورزی و منابع طبیعی، 3(4): 35-44.
مرادی، ح ر.؛ بهزادفر، م.؛ صادقی، س.ح.ر. (1385). بررسی ارتباط بین پارامترهای بارندگی و عامل فرسایندگی باران در استان خوزستان. مجلة علمی کشاورزی، 29(4): 69 - 83.
نیک‌کامی، د.؛ مهدیان، م.ح. (1393). تهیة نقشة شاخص مناسب باران کشور. نشریة علمی- پژوهشی مهندسی و مدیریت آبخیز. 6(4): 364 - 376.
همتی، م.؛ احمدی، ح.؛ نیک‌کامی، د.؛ زهتابیان، غ.ر. (1386). تعیین بهترین شاخص فرسایندگی باران در اقلیم نیمه‌خشک سرد ایران (مطالعة موردی ایستگاه تحقیقات حفاظت خاک کبوده علیا - کرمانشاه). چهارمین همایش ملی علوم و مهندسی آبخیزداری ایران، کرج دانشکدة منابع طبیعی.
Alipour, Z.T.; Mahdian, M.H.; Hakimkhani, Sh.; Saeedi, M. (2011). Calculating and estimating of EI30, Lal, Hudson and Onchev indices in namak lake watershed. Journal of Agricultural Sciences of Tabriz Azad University, 4(14): 141-157.
Alipour, Z.T.; Mahdian, M.H.; Pazira, E.; Heidarizadeh, M.; Rahimi Bandar Abadi, S.; Saeedi, M. (2011). Efficiency comparison of common geostatistics methods with of fuzzy kriging in preparing rainfall isoerodent map in namak lake watershed. Watershed Management Research Journal (Pajouhesh & Sazandegi), 86: 32-41.
Arnoldus, H. (1977). Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. FAO Soils Bull. 34, 39-51.
Arnoldus, H.M.J. (1980). An approximation of the rainfall factor in the Universal Soil Loss Equation. In: De Boodt, M., Gabriels, D. Eds., Assessment of Erosion. Chichester, New York, 127-132.
Bernestein, L. (2007). Climate Change 2007: Synthesis Report, Summary for Policymakers Intergovernmental Panel on Climate Change (IPCC). Un-edited copy Prepared for COP-13 Edition.
Ferro, V.; Porto, P. (1999). A comparative study of rainfall erosivity estimation for southern Italy and southern Australia. Hydrology Science. 44: 3-24.
Fournier, F. (1960). Climate et erosion; la relation entre lerosion du sol par leau et les precipitations atmospheriques. First edition. Presses Universitaires de France, Paris (In French).
Gorbanpour, D. (2004). Study and evaluation of rainfall erosivity index (R) in Mazandaran. MSc thesis in Watershed Management, Mazandaran University.
Hadley, R.F.; Lal, R.; Onstad, C.A.; Walling, D.E.; Yair, A. (1985). Recent developments in erosion and sediment yield studies. UNESCO, Paris, 127 p.
Hakim Khani, Sh.; Hakim Khani, A. (2011). Rainfall erosivity mapping for Lorestan province. Watershed Management Research Journal (Pajouhesh & Sazandegi), 89: 62-72.
HakimKhani, S.; Mahdian, M.H.; ArabKhedri, M.; Ghorbanpoor, D. (2005). Investigating rainfall erosivity in Iran. 3th Erosion and Sediment National Conference, Soil Conservation and Watershed Management Research Center, 28-31 August, Tehran, Iran.
Hemmati, M.; Ahmadi, H.; Nikkami, D.; Zehtabian, G.H. (2008). Determining of best rainfall erosivity index in Iran's cold semi-arid climate (Case Study: Soil Conservation Research Station of Kaboudeh Olia–Kermanshah). 4th National Conference on Sciences and Watershed Management Engineering, Department of Natural Resources, Karaj.
Hudson, N. (1971). Soil Conservation, second Edition. B. T. Batsford, London.
Kavian, A.; Fathollah Nejad, Y.; Habibnejad, M.; Soleimani, K. (2011). Modelling Seasonal Rainfall Erosivity on a Regional scale: A case Study from Northeastern Iran. Journal of Environ Res, 5(4): 939-950.
Lal, R. (1976). Soil erosion on alfisoils in Western Nigeria. Effects of rainfall characteristics. Geoderma, 16: 389-410.
Lal, R.; Elliot, W. (1994). Erodibility and Erosivity. Soil Erosion esearch methods, Soil and Water Conservation Society. Ankeny, 181-208.
Ma, X.; He, Y.; Xu, J.; Van Noordwijk, M.; Lu, X. (2014). Spatial and temporal variation rainfall erosivity in a Himalayan watershed. Journal of Catena. 248-259.
Mikhailova, E.A.; Bryant, R.B.; Schwager, S.J.; Smith, S.D. (1997). Predicting rainfall erosivity in Honduras, Soil Science Society of America Journal. 61 (1): 273-279.
Mohammadi, G. (1998). Preparation of Rainfall erosivity mapping in Iran using Fournier index and Kriging statistical method. Journal of Agricultural Sciences and Natural Resources. 4(3): 35-44.
Moradi, H.R.; Behzadfar, M.; Sadeghi, S.H.R. (2007). Investigation of relationship between rainfall and the rainfall erosivity parameters in Khuzestan province. Journal of Agricultural Scientific, 29(4): 69-83.
Morgan, R.P.C. (1995). Soil Erosion and Conservation. Addison Wesley, London, 198 p.
Nikkami, D.; Mahdian, M.H. (2014). Rinfall erosivity Mapping in Iran. Journal of Watershed Engineering and Management, 6(4): 364-376.
Ogedengbe, K.; Adesina, A.O.; Alabi, R.T. (2008). Estimation of the R-factor of universal soil loss equation using monthly rainfall amount for Nijeria. J. World assoc. Soil Water Conserv, 3: 20-26.
Onchev, N.G. (1985). Universal index for calculating rainfall erosivity. In: El-Swaify, S.A., Moldenhauer, W.C. and Lo, A. (eds), Soil erosion and conservation, Soil Conservation Society of America, Ankeny. IO, 424-431.
Panagos P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A. (2015). Rainfall erosivity in Europe. Journal of Science of the Total Environment. 511, 801-814.
Panahi, J. (1998). Determining the Rainfall Erosivity Index in Islamic Republic of Iran. MSc Thesis, Irrigation Course, Shiraz University, College of Agriculture.
Rezaei, M.; Davatgar, N.; Tajdari, K.; Abolpour, B. (2010). Investigating the Spatial Variability of Some Important Groundwater Quality Factors in Guilan, Iran. Journal of Water and Soil, 24(5): 932-941.
Sadeghi, S.H.R.; Tavangar, S. (2015). Development of stational models for estimation of rainfall erosivity factor in different timescales. Journal of Natural Hazards. 77, 429-443.
Sadeghi, S.H.R. (2009). Determining of Spatial Variability of Rainfall Erosivity Index in Mazandaran Province. Research Project of Management and Planning Organization.
Salles, C.; Poesen, J. (2000). Rain properties controlling soil splash detachment. Hydrological Process, 14: 271-282.
Sanchez-Moreno, J.F.; Mannaerts, C.M.; Jetten, V. (2014). Rainfall erosivity mapping for Santiago Island, Cape Verde. Geoderma, 217, 74-82.
Sepaskhah, A.R.; Panahi, J. (2007). Estimating storm erosion index in I.R. Iran. Iranian Journal of Science & Technology, Transection B, Engineering, 31(B2): 237-248.
Shamashd, A.; Azhari, M.N.; Isa, M.H.; Wan Hussin, W.M.A.; Parida, B.P. (2008). Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for pulau penang in peninsular Malaysia. Catena 72(3): 423-432.
Sharifan, H. (2008). Evaluation of equations erosivity index and parameters of rainfall in Gorgan. Journal of Agricultural Sciences and Natural Resources, 14(5): 207-215.
Silva, A.M. (2004). Rainfall erosivity map for Brazil. Catena 57: 251-259.
Sukhanovski, Y.P.; Ollesch, G.; Khan, K.Y.; MeiBner, R. (2002). A new index for rainfall erosivity on a physical basis. J. Plant Nutr. Soil Sci. 165, 51-57.
Ufoegbune, G.C.; Bello, N.J.; Ojekunle, Z.O.; Orunkoye, A.R.; Eruola, A.O.; Amori, A.A. (2011). Rainfall Erosivity Pattern of Ogun River Basin Area (Nigeria) using Modified Fournier Index. European Water Journal, 35: 23-29.
Wichmeier, W.H.; Smith, D.D. (1978). Predicting rainfall losses: a guide to conservation planning. Agriculture Handbook No. 537, US Department of Agriculture, Washington, DC.
Yu, B. (1998). Rainfall erosivity and its estimation for Australias tropics. Australian Journal of Soil Research 36: 65-143.
Zehtabian, G.H.; Janfaza, E.; Mohammad Asgari, M.; Nematollahi, M.J. (2010). Modelling of groundwater spatial distribution for some chemical properties (Case Stududy in garmsar watershed). Irainian Journal of Range and Desert Research, 17(1): 61-73.