اولویت‌بندی زیرحوضه‌های آبخیز بهشت‌آباد از نظر پتانسیل سیل‌خیزی

نوع مقاله : مقاله کامل

نویسندگان

1 کارشناس‌ارشد آبخیزداری دانشگاه شهرکرد

2 استادیار دانشکدة منابع طبیعی و علوم زمین دانشگاه شهرکرد

3 دانشیار دانشکدة منابع طبیعی و علوم زمین دانشگاه شهرکرد

4 کارشناس‌ارشد مرکز تحقیقات منابع آب دانشگاه شهرکرد

چکیده

تحقیق حاضر به اولویت‌بندی مکانی سیل‌خیزی زیرحوضه‌های آبخیز بهشت‌آباد با استفاده از نرم‌افزار HEC-HMS پرداخته است. در این تحقیق از روش شمارة منحنی برای برآورد تلفات بارش، از روش  SCSبرای شبیه‌سازی تبدیل بارش-رواناب در سطح زیرحوضه‌ها و از روش ماسکینگام به منظور روندیابی هیدروگراف سیل خروجی حوضه استفاده شد. سپس، با روش حذف متوالی، میزان مشارکت زیرحوضه‌ها در دبی اوج خروجی حوضه تعیین شد و اولویت‌بندی زیرحوضه‌ها از نظر دبی اوج سیل و کاهش دبی به ازای واحد سطح صورت گرفت. روندیابی سیل در آبراهه‌ها نشان داد که میزان مشارکت زیرحوضه‌ها در سیل خروجی متناسب با دبی اوج زیرحوضه‌ها نیست. لذا، به‌منظور حذف اثر مساحت در اولویت‌بندی زیرحوضه‌ها، میزان تأثیر هر واحد سطح زیرحوضه در سیل خروجی نیز محاسبه شد. نتایج اولویت‌بندی از نظر دبی اوج، بر اساس سهم مشارکت هر زیرحوضه در محل خروجی حوضه نشان‌دهندة این است که زیرحوضه‌های درکش ورکش و بهشت‌آباد به ترتیب با 16/29 و 5/2 درصد، بیشترین و کمترین سهم را در دبی اوج سیلاب خروجی از حوضه بر عهده داشته است. نتایج اولویت‌بندی براساس کاهش دبی به ازای واحد سطح نشان‌دهندة این است که زیرحوضة بهشت‌آباد با داشتن کمترین مساحت نسبت به بقیة زیرحوضه‌ها بیشترین و زیرحوضة تنگ دهنو کمترین تأثیر را داشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prioritization of Flooding Potential in Beheshtabad Subbasins

نویسندگان [English]

  • Bahram Badri 1
  • Rafat Zare Bidaki 2
  • Afshin Honarbakhsh 3
  • Fatemeh Atashkhar 4
1 MSc in watershed management, Shahrekord University.
2 Assistant Professor of Natural Resources, Faculty of Earth Sciences, Shahrekord University, Iran
3 Associate Professor of Natural Resources, Faculty of Earth Sciences, Shahrekord University, Iran
4 MSc. in Water Research Center, Shahrekord University, Iran
چکیده [English]

Introduction
Flood is a natural hazard that its occurrences can be observed more frequently in recent years. For better flood mitigation and control, it is needed to identify flood production factors and determine the high potential flood areas. Hydrological model is a simplified representation of natural system and the rainfall-runoff model is one of the most frequently used events for flood simulation. HEC-HMS is one computer model that becomes very popular for its ability in simulation of short time events. The aim of this research is to investigate spatial prioritization of flooding in Beheshtabad sub-catchments using HEC-HMS software.
 
Material and Method
Behashtabad Basin located in Chaharmahal-va-Bakhtiary Province, Iran, is 3866 km2 and its mean elevation is 2317 meters above sea level. It is divided into 6 sub basins according to 6 hydrometric stations. Land use categories of the study basin were extracted using ETM+ Images for 2009. Using 170 ground control points, land use map of Beheshtabad basin was prepared with total accuracy of 99.34 and Kappa Index equal to 0.81. Rangelands cover most of the study area. Soil Hydrological groups and land use data have also been used for mapping sub basins curve number with antecedent moisture of past five days. The mean curve number of the study basin is 72.69. Daily precipitation data of 6 rain gauges in study area have been used for analysis of maximum 24 hr precipitation in different return periods. Rainfall hyetographs of flood events have been derived from recording rain gauges data. CN method has been used for estimation of initial loss, SCS method for runoff hydrograph simulation, and Muskingum method for flood routing simulation. HEC-HMS model was calibrated using 2 Flood hydrographs and corresponding hyetographs for each sub-basin and validated for 1 flood event.
Results and Discussion
Rainfall loss in Beheshtabad sub-basins is ranged from 0.13 to 0.19, curve number ranged from 69.73 in Kooh-Sookhteh sub-basin to 73.71 in Kharaji sub-basin, and lag time also ranged from 0.99 hr in end Beheshtabad to 5.72 hr in Kharaji sub-basin. Using optimized rainfall loss index derived from calibration stage, HEC-HMS is validated for one flood event for each sub-basin. Model validation shows very little difference (below 1%) between estimated and recorded data in all sub-basins. Among sub-basins, Darkesh-Varkesh has the most and end Beheshtababd has the lowest peak discharge in all return periods. Prioritization of sub-basins according to their areas indicates that bigger sub-basins don’t have essentially highest amount of the rate of Qsub/Qtotal. In this comparison, Darkesh-Varkesh sub-basin with an Areasub/Areatotal rate of 0.13 has the highest rate of Qsub/Qtotal. Flood routing in streams indicated that the rate of participation of sub-catchments in output flood is not proportional to sub-catchment peak discharge. Therefore, in order to eliminate the effects of area in participating sub-catchments, the rate of influence on each unit of sub-catchment area in output flood was calculated as well. The results of prioritization by peak discharge, based on participation of each sub-catchment in output location of watershed, indicates that Darkesh-Varkesh and Beheshtabad sub-catchments with 29.16 and 2.5 percent have, respectively, the maximum and minimum of participation in output flood peak discharge of the watershed. Results of prioritization based on reduction of discharge per unit area show that Beheshabad sub-catchment with the lowest area in comparison with other sub-catchments has the highest participation and Tange-Dehno has the lowest role and contribution.
Conclusion
In the present study, rainfall-runoff modeling is carried out using HEC-HMS hydrologic model. Results of simulation in 18 events and comparison of simulated and observed hydrographs indicated that the model can be applied for simulation of rainfall-runoff in this study area. Other researches like Kumar and Bhattacharjya (2011) and Hegdus et al. (2013) found same results as our findings. Ranking sub-basins according to peak discharge without flood routing show that Darkesh-Varkesh has the most and end Beheshtabad has the lowest peak discharge. According to contribution in total discharge, the results are also the similar. Soleimani et al (2008) and Zehtabian et al. (2010) also found the same results. Finally, according to decrease in total Q per unit area, ranking show that end Beheshtabad sub-basin, despite of the smallest area, has the highest contribution in total Q per unit area. Nasri et al. (2011) also concluded that the areas located near the outlet of study basin have the most contribution in flood production. This research shows that the Darkesh-Varkesh sub-basin needs the most attention in selection of management practices especially to optimize flood control and flood mitigation solutions.

کلیدواژه‌ها [English]

  • Beheshtabad Basin
  • Chaharmahal- va- Bakhtiary Province
  • curve number
  • HEC-HMS
  • Muskingham method
  • SCS Method
بهرامی، س. ع.؛ اونق، م.؛ فرازجو، ح (1390). نقش روندیابی رودخانه در شناسایی و اولویت بندی واحدهای هیدرولوژیک حوضة سد بوستان از نظر سیل‌خیزی و ارائة راهکارهای مدیریتی، مجلة حفاظت منابع آب و خاک، 1(1)، پاییز: 11-26.
درخشان، ش. (1389). مطالعة پتانسیل سیل‌خیزی حوضة آبخیز کسیلیان با استفاده از سیستم اطلاعات جغرافیایی، نشریة تحقیقات کاربردی علوم جغرافیایی، جلد 13، 16، بهار: 51-63.
رستمی‌زاد، ق.؛ خلیقی سیکارودی، ش.؛ مهدوی، م. (1392). واسنجی روش‌های مختلف برآورد تلفات بارش در مدل HEC-HMS به منظور شبیه‌سازی رواناب سطحی (مطالعة موردی: حوضة آبخیز کن)، نشریة مرتع و آبخیزداری، 66(3): 359-372.
شامحمدی، ش.؛ زمردیان، م. (1392). مقایسة مدل‌های SCS و SMA-B در برآورد سیلاب حوضة آبخیز رود زرد، نشریة علوم و مهندسی آبخیزداری ایران، 7(20): 9-17.
ثقفیان، ب.؛ فرازجو، ح. (1386). تعیین مناطق مولد سیل و اولویت‌بندی سیل‌خیزی واحدهای هیدرولوژیکی حوضة سد گلستان. مجلة علوم و مهندسی آبخیزداری ایران، 1: 156-167.
سلیمانی،ک.؛ بشیر گنبد، م.؛ موسوی، س ر.؛ خلیقی، ش. (1387). پتانسیل تولید سیل در حوضه‌های آبخیز با استفاده از مدل HEC_HMS در محیط سامانة اطلاعات جغرافیایی (مطالعة موردی حوضة معرف کسیلیان). فصلنامة پژوهش‌های جغرافیای طبیعی، 65، پاییز: 51-60.
کمالی، م.؛ سلیمانی، ک.؛ شاهدی، ک.؛ نوشهری، ا.؛ گمرکچی، ا. (1394). تعیین نقاط سیل‌خیز و اولویت‌بندی زیرحوضه‌ها در حوضة آبخیز باراجین شهر قزوین با استفاده از تلفیق مدل HEC-HMS و سیستم اطلاعات جغرافیایی، نشریة علوم و مهندسی آبخیزداری ایران، 9 (29): 27-34.
رفیعی ساردویی، ا.؛ خلیقی سیکارودی، ش.؛ آذره، ع.؛ رستمی خلج، م. (1394). کاربرد مدل HEC-HMS در اولویت‌بندی پتانسیل سیل‌خیزی حوضة آبخیز بالادست سد کرج، نشریة علوم و مهندسی آبخیزداری. 9(28): 53-56.
Bahrami, S.A.; Onagh, M.; Farazjoo, H. (2011). The Role of Flood routing in Determining and Priorizing of Hydrological Units Flooding in Boustan Dam and introduction Management solutions, Water and Soil Resources Conservation Journal, 1(1): 11-26. 
Choudhari, K.; Panigrahi, B.; Paul, J.C. (2014). Simulation of rainfall-runoff process using HEC-HMS model for Balijore Nala watershed, Odisha, India, International Journal of Geomathics and Geosciences, 5)2): 253-266.
Derakhshan, Sh. (2010). Study of Flood Potential in Kasilian Watershed Using Geographic Information System, Applied Research in Geographic Sciences, 13(16): 51-63.
Foody, G.M.; Ghoneim, E.N.; Arnell W.N. (2004). Predicting Location Sensitive to Glash Flooding in Arid Environment, Journal of Hydrology, 292:48-58.
Heghedus, P.; Czigany, S.; Balatonyi, L.; Pirkhoffer, E. (2013). Sensitivity of the HEC-HMS Runoff  Model for ear-surface Soil Moisture Contents on the Example of A Rapid- response Catchment in SW Hungary, Riscuri si Catastrofe, XII(12):125-137.
Kamali, M.; Solaimani, K.; Shahedi, K.; Noshahri, A.; Gomrokchi A. (2015). Determining the Flooding Points and Prioritizing Subcathments of Barajin Cachment of Qazvin Using HEC-HMS and GIS, Iran Watershed Management Science and Engineeering, 9(29):27-34.
Knebl, M.R.; Yang, Z.L.; Hutchison, K.; Maidment, D.R. (2005). Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event, Journal of Environmental Management, 75: 325-336.
Kumar, D.; Bhattacharjya, R.K. (2011). Distributed Rainfall Runoff Modeling, International Journal of Earth Sciences and Engineering, 4(6): 270-275.
Nasri, M.; Soleimani, F.; Katani, M. (2011). Simulation of the Rainfall-Runoff Process Using of HEC-HMS Hydrological Model (A Case Study of Sheikh Bahaei Dam Basin), World Academy of Science, Engineering and Technology, 54: 548-562.
Rafiei Sardoii, E.; Khalighi Sigarood, Sh.; Azareh, A.; Rostami Khalaj, M. (2015). Application of HEC-HMS Model for Prioritization of Flooding Potential in Upper Karaj Dam Catchment, Iran watershed Management Science and Engineering, 9(28):53-56.
Rostamizad, Gh.; Khalighi, Sh.; Mahdavi, M. (2012). Calibrating Different Approaches for Rainfall loss Estimation in HEC-HMS in order to Surface Runoff Simulating (Case Study: Can Watershed), Range and Watershed Management Journal, 66(3): 359-371.
Saghafian, B.; Farazjoo, H. (2007). Determination Flood Producing Areas and Priorization of Hydrological Units in Golestan Dam Basin, Iranian Watershed Management Science and Engineering Journal, 1: 156-167.
Shamohamadi, Sh.; Zomorodian, M. (2013). Comparing SCS and SMA-B Models in Flood Estimating  in Zard River  Basin, Iran Watershed Management Science and Engineering Journal, 7(20): 9-16.
Soleimani, K.; Gonbad, M.B.; Mousavi, S.R.; Khalighi, Sh. (2008). Flood production Potential in Watersheds using HEC-HMS and Geographical Information Science (Case Study: Kasilian Basin). Natural Geographic Researches, 65: 51-60.
Yusop, Z.; Chan, C.H.; Katimon, A. (2007). Runoff characteristics and application of HEC-HMS for modeling storm flow hydrograph in an oil palm catchment, Water Science and Technology, 56(8): 41-48.
Zehtabiyan, Gh.; Ghoddusi, J.; Ahmadi, H.; Khalilizadeh, M.; Moghali, M. (2010). Assessment of the Flood Potential Ranking of  Sub-basins and Determination of  Flood Source Areas, Journal of Environmental Hydrology, 18(24): 1-9.