ارائۀ روشی نو برای پهنه ‏بندی روند درجۀ روز سرمایش ماهانۀ کشور

نوع مقاله : مقاله کامل

نویسندگان

1 استاد آب‏ و هواشناسی، دانشگاه یزد

2 دانشجوی دکتری آب‏ و هواشناسی، دانشگاه یزد

3 دانشجوی دکتری آب‏ و هواشناسی، دانشگاه تهران

چکیده

هدف از این پژوهش ارائة روشی نو برای واکاوی مکانی‏- زمانی تغییرات نیاز سرمایش کشور در دهه‏های آینده است. برای اجرای این پژوهش از داده‏های گردش کلی جو EH5OM استفاده شد. این داده‏ها تحت سناریوی A1B  کمیتة بین‏المللی تغییر اقلیم‏ است و با تفکیک 75/1 درجة طولی ‏و عرضی اجرا شده‏ است. با مدل ریزمقیاس نمایی، داده‏های میانگین دمای روزانه طی دورة آماری (2015 ـ 2050) به تفکیک عبارت است از:  27/0×27/0 درجة طول و عرض جغرافیایی، که حدوداً نقاطی با ابعاد 30×30 می‏باشند. سرانجام، آستانة دمایی پهنه‏ها مشخص و به یاخته‏ها تعمیم داده شد و درجة روز سرمایش ماهانة کشور در ماتریسی به ابعاد 2138×12 در نرم‏افزار MATLAB استخراج شد. روند و شیب روند درجة روز سرمایش ماهانه نیز طی دورة مورد مطالعه از طریق آزمون من‏- ‏کندال و روش حداقل مربعات محاسبه شد. نتایج نشان داد بیشترین گسترة مکانی مناطق دارای روند مثبت نیاز سرمایش در ماه‏های فصل بهار، به‏ویژه در ماه می، است. این سناریو نوید می‏دهد که در آینده در ایران  فصل بهار گرم‏تر خواهد شد. بیشترین میزان گرمایش در این فصل مختص جلگه‌‏ها و سواحل جنوبی با شیب روند 2 ـ 4 درجة روز در دهه است.



 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A new method for mapping the monthly cooling degree days, Iran

نویسندگان [English]

  • Kamal Omidvar 1
  • Reza Ebrahimi 2
  • Teymour Alizade 3
1 Professor of Climatology, University of Yazd, Iran
2 Ph.D. Candidate of Climatology, University of Yazd, Iran
3 Ph.D. Candidate in Climatology, University of Tehran, Iran
چکیده [English]

Introduction
One of the main problems in the use of atmospheric general circulation models (GCM) for regional assessments is their low spatial resolution that is required to be downscaling by using statistical or dynamical patterns. Therefore, in this study, it is necessary to consider the effects of different ways on the investigated system. The best mean to consider and investigate the effects of greenhouse gases on the atmosphere at regional scale is the use of hybrid models of AOGCM, as one of the indices of climate degree days that its changes play an important role in environmental issues such as energy consumption for heating and cooling in future. Given the fact that Iran has diversity in elevation and climatic conditions and the most important factor in the cooling needs is along with changes in altitude and atmospheric moisture, the climate change is caused by the effects of global warming. 
Materials and Methods
In this study, EH5OM database was used to detect the effects of global warming on cooling degree days. This is like the data of general circulation of the atmosphere and ocean models. This has been formed by data of atmospheric and ocean models. The data are implemented from 1960 to 2100, which are the general circulation of the atmosphere data. An international panel of climate change has been implemented by A1B scenario. EH5OM hybrid model is one of the most successful CMIP3 models in simulating climate, in comparison with the models of the twentieth century. EH5OM is one of the hybrid models of atmosphere-ocean ECHAM5 is related to atmospheric models and MPI-OM is related to ocean model. ECHAM has spectral dynamic core; the data of this scenario have been implemented from 1950 to 2100; the data of this scenario, from 2015 to 2050, were used in this study. Given that this research has regional (Iran) dimension, the data in the fourth climatic regional models (RegCM4) are downscaled that are best suited for little scaling and regional processes (Roshan et al., 2012; Randall, 2007). Downscaling model of output data are with dimensions of 0.27×0.27 longitude and latitude. This covers about the dimensions of 30×30 km in area of Iran.
After the simulation, the average of daily temperature for a period of 36 years (2015-2050) was derived by the model in a matrix with 2140×13140 arrays. In the matrix the rows represent the days of a year and the columns are the numbers of cells.
Results and Discussion
Table 1 shows EH5OM model scenarios under the conditions of greenhouse gases (carbon dioxide and sulfur atmosphere) as published by the Max Planck Institute. These scenarios were simulated for the period from 2000 to 2100. In fact, in this study we sought to identify change parameters of cooling degree days, according to the scenario of this model. As it is shown in Figure 1, in most of the scenarios greenhouse gas emission has taken an upward turn from the twentieth century and most of them are included in group A scenarios.
These results were performed with the results of analysis; the process of cooling degree days in the previous period, by Masoodian et al. (1393), showed that most of the upward range of cooling needs can be seen in the summer. But it is in agreement with the results of Roshan et al. (2012) who expressed warming regions of Iran in the first half of the year, in the upcoming period, especially in South Bar. This suggests that hot areas of the country will become warmer in spring. With the onset of summer, the number of the regions possessed the trend will be reduced.
Conclusion
In this research, after calculating the threshold of comfort in each station of the country and its compatibility with the surrounding cells, cooling degree days and its changes were calculated. The results of this research show warmer months of March, April and especially May and June in the coming decades in the country compared with other months of the year. In fact, according to the estimate of this scenario and the use of fossil fuels, the biggest challenge in the months of spring is warmer weather and increased demand for energy consumption. This can be a sign of early consumption of energy for cooling in the country in the coming decades.

کلیدواژه‌ها [English]

  • EH5OM model
  • Iran
  • Mann-Kendall Test
  • RegCM4 model
  • the slope of the trend
باباییان و همکاران (1393). شبیه‏سازی آسایش اقلیم استان خراسان رضوی تحت سناریوهای تغییر اقلیم، مطالعات جغرافیایی مناطق خشک‏، 5(18): 95 ـ 112.
مسعودیان، ا.؛ علیجانی، ب. و ابراهیمی، ر. (1391). واکاوی میانگین مجموع درجه/ روز نیاز (گرمایش و سرمایش) در قلمرو ایران، پژوهش‏نامة جغرافیایی، 1: 23 ـ 36.
مسعودیان، س. ا.؛ ابراهیمی، ر. و یاراحمدی، ا. (1393). واکاوی مکانی- زمانی میزان روند ماهانة درجة روز گرمایش در قلمرو ایران زمین، مجلة جغرافیا و توسعة ناحیه‏ای، 12(23).
Artmann, N.; Gyalistras, D.; Manz1, H. and Heiselberg, P. (2008). Impact of climatewarming on passive night cooling potential, Building Rresearch Information, 36: 111-128.
Babaian, E.; Modirian, R. and Karimian, M. (2014). Simulation of climatic comfort in KhorasanRazavi province under climate change scenarios, Geographical Studies drought regions, 5(18): 95-112.
Borah, P.; Manoj, K. and Sadhan, M. (2015). Estimation of degree-days for different climatic zones ofNorth-EastIndia, Sustainable Cities and Society, 14: 70-81.
Chander, G. and Groeneveld, D.P. (2009). Intra-annual NDVI validation of the Landsat 5 TMradiometric calibration, International Journal of Remote Sensing, 30(6): 1621-1628.
Elizabeth, M. and Federico, C. (2013). Variability and trends of heating degree-days in Argentina, International Journal of Climatology, 33(10): 2352-2361.
Frank, T. (2005). Climate change impacts onbuilding heating and cooling energy demand in Switzerland, Energy and Buildings, 37: 1175-1185.
Jiang, F.; Xuemei, Li.; Binggan, W. and Ruji Hu, Z. (2010). Observed trends of heating and cooling degree-days in Xinjiang Province, China. Theor Appl Climatol, 97: 349-360.
Li,Z.; Miller, H; Scott, N.; Edward, T. and Schmidtmann, A. (2007). GIS Tool to Estimate West Nile Virus Risk Based on a Degree-Days Model.
Masoudian, S.A.; Alijani, B. and Ebrahimi, R. (2012). Analysis average total degree/ day need(heating and cooling) in the territory of Iran, Geographical Journal, 1: 36-23.
Masoudian, S.A; Ebrahimi, R. and Yarahmadi, E. (2014). The process . analysis spatial temporalmonthly heating degree days in the territory of Iran, Journal of Geography and Regional Development, 12(23).
Oktay, Z.; Coskun, C. and Dincer, I. (2011).A new approach for predicting cooling degree-hours and energy requirements in buildings, Energy, 36: 4855-4863.
Randall, DA.; Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, KB.; Tignor, M. and Miller, HL. (eds) Climate change. (2007).The physical science basis, Cambridge University Press, Cambridge.
Reichard, T. and Kim, J. (2008). How well do coupled models simulate today’s climate, Bull Am Meteorol Soc, 89: 303-311.
Roeckner, E.; Brokopf, R.; Esch, M.; Giorgetta, M.; Hagemann, S.; Kornblueh, L.; Manzini, E.; Schlese, U. and Schulzweida, U. (2006). Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model, J. Clim, 19: 3771-3791.
Rosa, M; Vincenzo, B; Federico, S. and Luca, Tagliafico A. (2014). Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach.
Roshan, Gh.R. and Grab, S.W. (2012). Regional Climate Change Scenarios and Their Impacts onWater Requirements for Wheat Production in Iran, International Journal of Plant Production, 2: 239-265.
Semmler, T.; Ray, M.; Susan, S.; Jenny, H.; Paul, N. and Shiyu, Wang (2009).Influence of climate change on heating and cooling energy.
Sun , Y.J.; Wang, J.F.; Zhang, R.H.; Gillies, R.R.; Xue, Y. and Y.C., Bo (2004). Air Temperatureretrieved from remote sensing data based on thermodynamics, Theor. Appl. Climatol., Published Online.
Taseska, V.; Markovska, N. and Callaway, J.M. (2012). Evaluation of climate change impacts onenergy demand, Energy, 48(1): 88-95.
Wang, H. and Qingyan, C. (2014). Impact of climate change heating and cooling energy use in buildingsin the United State, Canadian Journal of Remote Sensing, 29(2): 141-153.
Wilby, R.L. and Heris, D. (2006). A decision support tool for the assessment of regional climate change impacts, SDSM manual version 4.2, Environment Agency of England and Wales, PP. 1-94.