شاخص‌های سنجش از دوری چه‏ اندازه می‏توانند موجب بهبود برآورد بار معلق شوند؟

نوع مقاله : مقاله کامل

نویسندگان

1 دانشیار دانشکدة کشاورزی و منابع طبیعی دانشگاه اردکان

2 دانشجوی کارشناسی ارشد آبخیزداری، دانشکدة کشاورزی و منابع طبیعی دانشگاه اردکان

3 استادیار دانشکدة کشاورزی و منابع طبیعی دانشگاه اردکان

چکیده

در این پژوهش کارایی شاخص‏های ماهواره‏ای و پارامترهای ژئومورفومتری در برآورد بار رسوبی با استفاده از مدل‏های مبتنی بر هوش مصنوعی و داده‏کاوی به چالش کشیده شده است. بدین منظور، نخست مدل‏ها به کمک پارامترهای ژئومورفومتری مستخرج از مدل رقومی ارتفاعی و شاخص‏های ماهواره‏ای بهینه‏سازی شد و نزدیک‏ترین داده‏های دبی و رسوب به زمان تصاویر ماهواره‏ای خروجی مدل درنظر گرفته شد. پس از اجرای الگوریتم‏ها، به وزن‏دهی پارامترها و تعیین میزان تأثیرشان در پیش‏بینی بار رسوبی معلق پرداخته ‏شد. نتایج نشان داد عملکرد مدل‏ها با ورودی‏های مختلف گوناگون است. مقادیر RMSE مدل‏ها بیانگر آن است که در صورت استفاده از پارامترهای ژئومورفومتری به ‏عنوان ورودی مدل مقدار RMSE بیشتر است و در مقابل با استفاده از برخی شاخص‏ها به‏ عنوان ورودی مدل‏ها میزان RMSE کاهش می‏یابد؛ به ‏طوری که در مدل فرایند گوسی با ورودی پارامترهای ژئومورفومتری مقدار۱۰/۳۵ RMSE= و در صورت ورودی شاخص‏های تصاویر ماهواره‏ای مقدار 7/513RMSE= است. با تلفیق پارامترهای ژئومورفومتری و شاخص‏ها میزان دقت همة مدل‏ها افزایش یافته و مدل فرایند گوسی با 026/5RMSE= بیشترین دقت را داشته است. نتایج حاصل از وزن‏دهی نیز نشان داد که شاخص‏های Clay index (average) و b5 (average) و NDVI (max) دارای بیشترین وزن بوده و بیشترین تأثیر را در پیش‏بینی بار رسوبی معلق داشته‏اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

How much the Remote Sensing Indices can Improve Suspended Sediment Predictions?

نویسندگان [English]

  • Ali Fathzdeh 1
  • Maryam Asadi 2
  • Ruhollah Taghizadeh-Mehrjardi 3
1 Associate Professor, Faculty of Agriculture and Natural Resources, Ardakan University
2 MSc student of watershed management, Faculty of Agriculture and Natural Resources, Ardakan University
3 Assistant Professor, Faculty of Agriculture and Natural Resources, Ardakan University
چکیده [English]

Introduction
In the recent decades, the prediction of suspended sediment load was highly regarded by water resources management and engineering researches, particularly in flood prone areas. Nowadays, the methods and artificial intelligence techniques to predict hydrologic properties have become very popular. In recent studies, we have used various parameters such as the spectral reflection bands of satellite images, land use and geology maps and climatic data. Landsat satellite images have good spatial resolution. Da Silvia (2015) also used spectral calibration of multispectral satellite images to assess suspended sediment concentration. Their results showed that the concentration of suspended sediment has been strongly influenced by seasonal rainfall. The yellow river sediment using Landsat satellite images were evaluated by Zhang et al (2014). The results showed that, using the modified algorithm and recovery appropriate climate models, TM / ETM + can be used to quantify the concentration of suspended sediment at the mouth of the Yellow River. In this study, they have investigated mining indices of satellite images and watershed geomorphometry parameters derived from the characteristics of the basin surface to evaluate and compare the performance of these parameters in prediction of the suspended sediment. In this study, the methods such as artificial neural networks, linear regression, K nearest neighbor, Gaussian processes, support vector machine and evolutionary support vector machine have been selected with the purpose to check the role of these parameters in prediction of suspended sediment load. The purpose of the detecting the impact of these parameters is to improve the assessment models. 
Materials and Methods
1- Study Areas
There were 68 catchment areas located in the provinces of Gilan and Lorestan from Iran. (Figure 1)
 
Figure 1. The location and studied stations
 
2- Data processing
Data mining geomorphometry
After determining the study area, geomorphometry parameters were extracted. Geomorphometry parameters was extracted from 30-meter area digital elevation model (Table 1)
 
Table1. Geomorphometry parameters extracted from DEM





Analytical Hillshading


MRRTF[1]




Aspect


MRVBF[2]




Catchment Area


Plan Curvature




Channel Network Base Level


Profile Curvature




Convergence Index


Relative Slope Position




Cross-Sectional Curvature


Slope




Discharge


Strahler Order




Drainage Density


Stream Power Index




Flow Accumulation


Suspension Load




Flow Directions


Tangential Curvature




General Curvature


Topographic Wetness Index




Longitudinal Curvature


Vertical Distance to Channel Network




LS Factor


Watershed Basins





 
3- The modeling process
In this study, we have used the input parameters in the prediction of suspended sediment load of data mining models such as linear regression, Gaussian processes, neural networks, k-nearest neighbor, support vector machine and evolutionary support vector machine.

Linear regression

Linear regression to model the value of a quantitative dependent variable is based on a linear relationship with one or more independent variables.

Artificial Neural Network

Artificial neural networks including computational models can be used even if the relationship between inputs and outputs of a physical system is complex and nonlinear, with a network of interconnected nodes that all are joined together.

K-Nearest Neighbor

K-Nearest Neighbor algorithm including the selection of a specific number of vector data is randomly selected from the set for the simulation period.
 
Gaussian process
A Gaussian process is a stochastic process consisted of random values at any point in space or time domain so that each of the random variables is normally distributed.

Support Vector Machine

Support vector machines are a class of supervised learning methods for classification and regression problems.

Evolutionary Support Vector Machine

Evolutionary vector machine model is used as an evolutionary strategy to optimize the results. It offers an evolutionary algorithm to solve the problem of dual optimization in a support vector machine.
 
4- Evaluation Model
In order to evaluate the algorithms applied to the data, we used the evaluation criteria of Root Mean Squared Error (RMSE), relative error (Re), Correlation coefficient (r), and Absolute error (AE).
 
5- Weighting parameters
To weight input parameters of support vector machine algorithm, we determine these algorithm coefficients in a normal vector of linear support machine as the weight of characteristics. 
 
Results and discussion
At first, the different algorithms were applied on the data of the geomorphometry parameters. The results showed that with use of geomorphometry parameters, Gaussian process model with RMSE = 10.35 and R = 0.986 is the best model to predict suspended sediment load. In the next phase models, we used the input data indices of satellite images. Then, index satellite images and geomorphometry parameters as input have been together and the models were run on them. Also, the results showed the Gaussian process model with RMSE= 5.026 and R=0.99. It has the highest accuracy for predicting suspended sediment load. (Figure 2)

Figure 2. The scatter plot of the observed and predicted values of the models A: linear regression, B: Artificial Neural Networks, C: nearest neighbor, D: Gaussian process, E: support vector machine, F: evolutionary support vector machine, using a combination of geomorphometry parameters and indicators of satellite images.
 
It can be concluded that the models applied in this study compared with those with climate data as their input have more accuracy. Also, the parameters of satellite images have a greater impact on the increase in the accuracy of the models.
 
Conclusion 
The use of satellite image indices and geomorphometry parameters as model input cause increases in the accuracy of data mining algorithms to predict suspended sediment load. The results of the study indicated that satellite imagery indices have been more effective in predicting suspended sediment load and using these indicators increase the accuracy of the models more effective than geomorphometry parameters. Therefore, with the indices of satellite images, Gaussian Process Model with RMSE =7.513 is using the geomorphometry parameters of the Gaussian process model with RMSE =10.35 as the highest accuracy. Combining geomorphometry parameters and indicators has increased the accuracy of all models and Gaussian process model with RMSE = 5.026 as the highest accuracy. The results of weighting also showed influence of satellite image indices to predict suspended sediment load.



1. Multi resolution ridge top flatness index


2. Multi resolution index off valley bottom flatness

کلیدواژه‌ها [English]

  • Data Mining
  • Digital Elevation Model
  • Geomorphometry Parameters
  • Satellite images
صنیعی آباده، م.؛ محمودی، س. و طاهرپرور، م. (1393). دادهکاوی کاربردی، ویراست دوم، تهران: نیاز دانش.
رحمانی، ن.؛ شاهدی، ک. و میریعقوب‌زاده، م. (۱۳۹۰). ارزیابی شاخص‏های پوشش گیاهی مورد استفاده در سنجش از دور (مطالعة موردی: حوضة هریسک)، هجدهمین همایش ژئوماتیک، تهران، دانشگاه علم و صنعت ایران.
Camdevyren, H.; Demyr, N.; Kanik, A. and Keskyn, S. (2005). Use of principal componentscores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs, Ecological Modelling, 181(4): 581-589.
Choi, S.U. and Lee, J. (2015). Assessment of total sediment load in rivers using lateral distribution method, Journal of Hydro-environment Research, 9(3): 381-387.
Collins, A.L., Walling, D.E. (2004). Documenting catchment suspended sediment sources: problems, approaches and prospects, Prog Phys Geogr, 28:159-196.
Cortes, C. and Vapnik, V. (1995). Support-vector network, Mach. Learn, 20: 273-297.
Cobaner, M.; Unal, B. and Kisi, O. (2009). Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data, Journal of hydrology, 367(1): 52-61.
Da Silva, A.G.A.; Amaro, V.E.; Stattegger, K.; Schwarzer, K.; Vital, H. and Heise, B. (2015). Spectral calibration of CBERS 2B multispectral satellite images to assess suspended sediment concentration, ISPRS Journal of Photogrammetry and Remote Sensing, 104: 53-62.
Hashimoto, K. and Oki, K. (2013). Estimation of discharges at river mouth with MODIS image, International Journal of Applied Earth Observation and Geoinformation, 21: 276-281.
Huang, H.L. and Chang, F.L. (2007). ESVM: Evolutionary support vector machine for automatic feature selection and classification of microarray data, Biosystems, 90(2): 516-528.
Ho, S.-Y.; Shu, L.-S. and Chen, J.-H. (2004). Intelligent evolutionary algorithms for large parameter optimization problems, IEEE Trans. Evolutionary Comput, 8(6): 522-541.
Kamusoko, C. and Aniya, M. (2007). Land use/cover change and landscape fragmentation analysis in the Bindura District, Zimbabwe, Land degradation & development, 18(2): 221-233.
Kowalczyk, P. and Logan, K. (1989). TM processing for routine use in mineral exploration, in Proceedings of the 7th Thematic Conference on Remote Sensing for Exploration Geology, Vol. I, Environmental Research Institute of Michigan, Ann Arbor, Mich., pp. 323-329.
Kumar, A.; Equeenuddin, S.M.; Mishra, D.R. and Acharya, B.C. (2016). Remote monitoring of sediment dynamics in a coastal lagoon: Long-term spatio-temporal variability of suspended sediment in Chilika, Estuarine, Coastal and Shelf Science, 170: 155-172.
Kisi, O. (2012). Modeling discharge-suspended sediment relationship using least square support vector machine, Journal of hydrology, 456: 110-120.
Lafdani, E.K.; Nia, A.M. and Ahmadi, A. (2013). Daily suspended sediment load prediction using artificial neural networks and support vector machines, Journal of Hydrology, 478: 50-62.
Liu, Q.J.; Shi, Z.H.; Fang, N.F.; Zhu, H.D. and Ai, L. (2013). Modeling the daily suspended sediment concentration in a hyperconcentrated river on the Loess Plateau, China, using the Wavelet–ANN approach, Geomorphology, 186: 181-190.
Montanher, O.C.; Novo, E.M.; Barbosa, C.C.; Rennó, C.D. and Silva, T.S. (2014). Empirical models for estimating the suspended sediment concentration in Amazonian white water rivers using Landsat 5/TM. International Journal of Applied Earth Observation and Geoinformation, 29: 67-77.
Nechad, B.; Ruddick, K.G. and Park, Y. (2010). Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters, Remote Sensing of Environment, 114(4): 854-866.
Ouillon S.; Douillet, P. and Andrefouet, S. (2004). Coupling satellite data with in situ measurements and numerical modeling to study fine suspended-sediment transport: a study for the lagoon of New Caledonia, Coral Reefs, 23: 109-122.
Park, E. and Latrubesse, E.M. (2014). Modeling suspended sediment distribution patterns of the Amazon River using MODIS data, Remote Sensing of Environment, 147: 232-242.
Rahmani, N.; Shahedi, K. and Miryaghoub zadeh, M. (1390). Assessment vegetation indexes used in remote sensing (case study of the basin Harisak), Eighteenth Geomatics, Tehran, Iran University of Science and Technology (In Persion).
Rajaee, T.; Nourani, V.; Zounemat-Kermani, M. and Kisi, O. (2010). River suspended sediment load prediction: Application of ANN and wavelet conjunction model, Journal of Hydrologic Engineering, 16(8): 613-627.
Rajaee, T. (2011). Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers, Science of the total environment, 409(15): 2917-2928.
Rencz, A.N. (1999). Remote sensing for the earth sciences: manual of remote sensing, Vol. 3 (No. Ed. 3). John Wiley and sons, p 409.
Rouse, J.W.; Haas, R.H.; Schell, J.A. and Deering, D.W. (1973). Monitoring vegetation systems in the great plains with ERTS, Third ERTS Symposium, NASA SP-351 I: 309-317.
Sani Abade, M.; Mahmoudi, S. and Taherparvar, D. (1393). Data mining applications (second edition), Publishing need knowledge, Tehran. (In Persion).
Schiebe, F.R; Harrington, Jr J.A. and Ritchie, J.C. (1992). Remote sensing of suspended sediments: the Lake Chicot, Arkansas project, Int J Remote Sens, 13: 1487-509.
Verstraeten, G. and Poesen, J. (2001). Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate, Geomorphology, 40(1): 123-144.
Wang, J.J. and Lu, X.X. (2010). Estimation of suspended sediment concentrations using Terra MODIS: An example from the Lower Yangtze River, China, Science of the Total Environment, 408(5): 1131-1138.
Wang, Y.G.; Wang, S.S. and Dunlop, J. (2015). Statistical modelling and power analysis for detecting trends in total suspended sediment loads, Journal of Hydrology, 520: 439-447.
Zhang, M.; Dong, Q.; Cui, T.; Xue, C. and Zhang, S. (2014). Suspended sediment monitoring and assessment for Yellow River estuary from Landsat TM and ETM+ imagery, Remote Sensing of Environment, 146: 136-147.
Zhu, Y.M.; Lu, X.X. and Zhou, Y. (2007). Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze Catchment, China, Geomorphology, 84(1): 111-125.
Zounemat-Kermani, M.; Kişi, Ö.; Adamowski, J. and Ramezani-Charmahineh, A. (2016). Evaluation of data driven models for river suspended sediment concentration modeling, Journal of Hydrology, 535: 457-472.