ارزیابی تکتونیک فعال در زیرحوضه ‏های جراحی‏- زهره بر پایۀ تحلیل مورفوتکتونیکی و اثرهای آن بر میدان‏ های نفتی حوضۀ مورد مطالعه

نوع مقاله : مقاله کامل

نویسندگان

1 دانشیار ژئومورفولوژی، دانشکدة علوم جغرافیایی، دانشگاه خوارزمی، ایران

2 دانشجوی دکتری ژئومورفولوژی، دانشکدة علوم جغرافیایی، دانشگاه خوارزمی، ایران

3 استادیار سنجش از دور، دانشکدة مهندسی ژئودزی و ژئوماتیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، ایران

چکیده

در این مطالعه، بر اساس پیوند نئوتکتونیک و توپوگرافی کنونی، فعالیت نئوتکتونیکی 38 زیرحوضة دارای میدان‏های نفتی و غیرنفتی جراحی‏- زهره، با استفاده از شاخص‏های ژئومورفیک SL، S، RA، HI،BS ، وAFارزیابی شد. نتایج نشان می‏دهد فعالیت نئوتکتونیکی نیمة شرقی بیشتر و 2/12، 5/34، و 2/53 درصد حوضه به‏ترتیب در کلاس‏های یک تا سه قرار دارند. سرانجام، با روی ‏هم قراردادن لایة نهایی نئوتکتونیک و لایة‏ نفتی مشخص شد که هیچ میدان‏ نفتی در مناطقی با نئوتکتونیک بالا وجود ندارد، اما 6/61 درصد در مناطقی با فعالیت کم قرار گرفته‏اند. بنابراین، چون میزانِ زیاد نئوتکتونیک باعث فرار و دگرریخت‏شدن تله‏های نفتی می‏شود و نیز مقداری فعالیت نئوتکتونیک برای تشکیل ساختارهای جدید و جای‏گیری تله‏ها لازم است، می‏توان استنباط کرد که بیشترین میدان‏ها در مناطقی است که هم نئوتکتونیک برای شکل‏گیری نفت‏گیرها وجود دارد هم میزان آن باعث فرارنکردنِ تله‏های نفتی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of active tectonics in Jarahi - Zohreh Sub-basins based on the morpho-tectonic analysis and its impacts on the oil fields of the basin

نویسندگان [English]

  • Ezatollah Ghanavati 1
  • Farideh Safakish 2
  • Yasser Maghsoudi 3
1 Associate Professor of Geomorphology, Faculty of Geographical Sciences, University of kharazmi, Iran
2 PhD Candidate in Geomorphology, Faculty of Geographical Sciences, University of Kharazmi, Iran
3 Assistant Professor of Remote sensing, Faculty of geodesic & Geomatics Engineering, Khaje Nasir Oldin Toosi University of Technology, Iran
چکیده [English]

Introduction
With 6.8 percent oil reservoirs, Zagros is one of the most prolific oil sedimentary basins. The greater part of its hydrocarbon reservoirs are concentrated in anticlinal traps. They are also the subsets of the structural traps. In addition to rich and vast hydrocarbon reservoirs, Zagros have been also considered in terms of its Neotectonic activities. The studies of neotectonic activities are important in control of landforms in tectonic regions, apart from its social and economic interests. The studies of active tectonics require a multi-disciplinary approach to integrate data from structural geology, geomorphology, stratigraphy, geochronology, seismology, and geodesy. The unrelenting competition between tectonic processes tends to build topography and surface processes to represent the core of tectonic geomorphology. The most effective morphometric indices have been related to erosional and depositional processes associated with fluvial systems. The rivers are highly sensitive to subtle landscape fluctuations induced by tectonic activity and can assist in differentiating active segments of geologic structures.Because drainage basins represent dynamic systems that may retain records of formation and progression since most tectono-geomorphic processes occur within its confines. Therefore, morphometric analyses of river networks, drainage basins and relief using geomorphic indices, as well as geostatistical analyses of topographical data have become useful tools for investigating landform evolution. In recent studies on morphotectonics, a mixture of geomorphologic and morphometric analyses of landforms and topographic analyses are utilized to obtain active tectonics. They have been tested in different tectonically active areas to provide insight about particular areas where are subject to active tectonic deformation. Therefore, since many geomorphologic effects are highly susceptible to tectonic movements and their changes are happening at the same time, we should be looking for the forms and shapes that have retained these changes over the years. With regard to the geomorphologic indices, the current study attempts to consider Neotectonic activities and its impact on the positioning of the oil fields in the Jarahi and Zohreh sub-basins.
 
Materials and methods
In order to achieve the goals of this research, documentary information,1:50000-1:25000 topographic maps and 1:100000-1:250000 geological map, Digital Elevation Model (DEM) related to SRTM topographic data and landsat 8 satellite images have been the important research tools. For the analysis of Neotectonic activities in the case study area, we have used such geomorphologic indices as Stream Length-Gradient index, River Sinuosity, Relief Amplitude, Hypsometric Integral, Basin Shape Factor and Drainage Basin Asymmetry Factor Index. ArcGIS software was used to digitize the topographic maps and draw river networks for calculating these indices.
 
Results and discussion
Results of the calculation of geomorphologic indices:
The SL values in the study area are ranged from 0 to 573. The S values in the study area are ranged from `1.1 to 2.46. in the study area, the RA values are ranged from 31 to 3254, the HI values from 0.04 to 0.56, the BS values  from 0.19 to 2.49 and the |AF–50| values from -28.83 to 32.59. The classification used in this paper for each geomorphic index is calculated from El Hamdouni's method. According to Relative Tectonic Activity (lat) index, three classes of high active (1.6 ≤ LAT < 2), 12.2%, moderate active (2 ≤ LAT < 2.5) 34.5%, and low active (lat ≥ 2.5) 53.2% values were identified.
Finally, with stratum overlaying of oilfield and the obtained final layer from geomorphologic indices of the studied basin, it was found that in the Class I areas, there was no oil fields with high level of tectonic activity, but 38.3 percent of oil fields are located in Class II areas with average tectonic activity and 61.6 percent of the oil fields are located in Class III areas with their low tectonic activity.
 
Conclusion
The obtained quantitative values from the results of the geomorphic indices in the 38 sub- basins helped to divide the studied basin into three tectonic areas with low, medium, and high tectonic activity. It was also shown that the Neotectonic activity level in different parts of the basin is not the same and the forces act with greater intensity in the eastern half. This activity was in more oil fields of Jarahi – Zohreh basin, i.e., 61.6 percent in the region with the lowest Neotectonic activity. In the areas with the highest Class of Neotectonic, there was virtually no oil field. The results indicated that Neotectonic has important role in the running or migration of oil traps and the extent of tectonic is necessary to create small fractures to oil running and finally oil production. In fact, it can be attributed to Neotectonic destructive and inhibiting roles in constructive and transferring hydrocarbons.

کلیدواژه‌ها [English]

  • Geomorphologic indices
  • Neotectonic
  • Jarahi-Zohreh
  • Oil fields
  • Zagros
ارفع‏نیا، ر. (1389). تکتونیک فعال در منطقة‏ اقلید، کاربرد مدل رقومی سرزمینی (DTM) در مورفوتکتونیک، فصل‏نامة زمینشناسیکاربردی، 6(4): 245ـ 256.
بهرامی، ش.؛ مقصودی، م. و بهرامی، ک. (1390). بررسی نقش تکتونیک در ناهنجاری مورفومتری شبکة زهکشی در چهار حوضة آبخیز در زاگرس، پژوهشهایجغرافیایطبیعی، 43(76): 51ـ 70.
بیاتی خطیبی، م. (1388). تشخیص فعالیت‏های نئوتکتونیکی در حوضة آبریز قرنقوچای با استفاده از شاخص‏های ژئومورفیک و مورفوتکتونیک، فضایجغرافیایی، 9(25): 23ـ 50.
سیف، ع. و خسروی، ق. (1389). بررسی تکتونیک فعال در قلمرو تراست زاگرس منطقة فارسان، پژوهشهایجغرافیایطبیعی، 42(74): 125ـ 146.
مددی، ع.؛ رضایی مقدم، م.ح. و رجایی اصل، ع. (1383). تحلیل فعالیت‏های نئوتکتونیک با استفاده از روش‏های ژئومورفورلوژی در دامنه‏های شمال غربی تالش (باغروداغ)، پژوهشهایجغرافیایی، 36(48): 123ـ 138.
مقصودی، م. و کامرانی دلیر، ح. (1387). ارزیابی نقش تکتونیک فعال در تنظیم کانال رودخانه‏ها (مطالعة موردی رودخانة تجن)، مجلة پژوهشهایجغرافیایی، 40(66): 37ـ 55.
منصوری، ر. و صفاری، ا. (1394). تحلیل فعالیت زمین‏ساختی حوضة آبخیز فرحزاد از طریق شاخص‏های ژئومورفیک، فصل‌نامة اطلاعاتجغرافیایی (سپهر)، 24(95): 93‌ـ 105.
یمانی، م.؛ کامرانی دلیر، ح. و باقری، س.ی. (1392). مورفومتری و ارزیابی شاخص‏های ژئومورفیک برای تعیین میزان فعالیت نوزمین ساخت در حوضة آبریز چله (زاگرس شمال غربی)، فصل‌نامة تحقیقاتجغرافیایی، 29(97): 1ـ 26.
Adams, K.D.; Wesnousky, S.G. and Bills, B.G. (1999). Isostatic rebound, active faulting, and potential geomorphic effects in the Lake Lahontan basin, Nevada and California, Geological Society of America Bulletin, 111(12): 1739-1756.
Ala, M.A.; Kinghorn, R.R.F. and Rahman, M.T. (1980). Organic geochemistry and source rock characteristics of the Zagros petroleum province, southwest Iran, Journal of Petroleum Geology, 3(1): 61-89.
Alipoor, R.; Poorkermani, M.; Zare, M. and El Hamdouni, R. (2011). Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW of Iran), Geomorphology, 128(1): 1-14.
Arfania, R. (2010). Active tectonics in Eghlid-Fars, Applied of DTM in Morphotectonics, Applied Geology, 6(4): 245-256 (Text in Persian). 
Bahrami, Sh.; Maghsoudi, M. and Bahrami, K. (2011). Evaluating the Effect of Tectonic in Anomaly of Drainage System Morphometry in Four Catchments in Zagros. Physical Geography Research Quarterly, 43(76): 51-70 (Text in Persian). 
Bayati Khatibi, M. (2009). Detection of Activities Neotectonic in the Catchment of Gharanghochay Using Indicators of Geomorphic and Morphotectonic, Geographic Space, Islamic Azad University, 9(25): 23-50 (Text in Persian).
Bull, W.B. and McFadden, L.D. (1977). Tectonic geomorphology north and south of the Garlock fault, California, In Geomorphology in arid regions, Proceedings of the eighth annual geomorphology symposium, State University of New York, Binghamton (pp. 115-138).
Burbank, D.W. and Anderson, R.S. (2011). Tectonic geomorphology, John Wiley & Sons.
Cannon, P.J. (1976). Generation of explicit parameters for a quantitative geomorphic study of Mill Creek drainage basin, Oklahoma Geology Notes, 36(1): 3-16.
Cheng, W.; Wang, N.; Zhao, M. and Zhao, S. (2016). Relative tectonics and debris flow hazards in the Beijing mountain area from DEM-derived geomorphic indices and drainage analysis, Geomorphology, 257: 134-142.
Chorley, R.J.; Schumm, S.A. and Sugden, D.E. (1984). Geomorphology, Methuen, New York, p.605.
Cox, R.T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment, Geological Society of America Bulletin, 106(5): 571-581.
Dar, R.A.; Romshoo, S.A.; Chandra, R. and Ahmad, I. (2014). Tectono-geomorphic study of the Karewa Basin of Kashmir Valley, Journal of Asian Earth Sciences, 92: 143-156.
Davis,  W. M. (1899). The geographical cycle. The Geographical Journal, 14(5), 481-504.
Della Seta, M.; Del Monte, M.; Fredi, P.; Miccadei, E.; Nesci, O.; Pambianchi, G.; Piacentini, T. and Troiani, F. (2008). Morphotectonic evolution of the Adriatic piedmont of the Apennines: an advancement in the knowledge of the Marche-Abruzzo border area, Geomorphology, 102(1): 119-129.
Demoulin, A.; Beckers, A. and Hubert-Ferrari, A. (2015). Patterns of Quaternary uplift of the Corinth rift southern border (N Peloponnese, Greece) revealed by fluvial landscape morphometry, Geomorphology, 246: 188-204.
Domínguez-González, L.; Andreani, L.; Stanek, K.P. and Gloaguen, R. (2015). Geomorpho-tectonic evolution of the Jamaican restraining bend, Geomorphology, 228: 320-334.
El Hamdouni, R.; Irigaray, C.; Fernández, T.; Chacón, J. and Keller, E.A. (2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain), Geomorphology, 96(1): 150-173.
Gao, M.; Zeilinger, G.; Xu, X.; Wang, Q. and Hao, M. (2013). DEM and GIS analysis of geomorphic indices for evaluating recent uplift of the northeastern margin of the Tibetan Plateau, China, Geomorphology, 190: 61-72.
Hack, J.T. (1973). Stream-profile analysis and stream-gradient index, Journal of Research of the US Geological Survey, 1(4): 421-429.
Hare, P.W. and Gardner, T.W. (1985). Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica, Allen and Unwin, Boston, pp.75-104.
Jain, V. and Sinha, R. (2005). Response of active tectonics on the alluvial Baghmati River, Himalayan foreland basin, eastern India, Geomorphology, 70(3): 339-356.
Keller, E.A. and Pinter, N. (1996). Active tectonics (Vol. 1338), Upper Seddle River, NJ, USA: Prentice Hall.
Keller, E.A. and Pinter, N.D.J. (2002). Active Tectonics, Earthquakes, Uplift, and Landscape, Environmental and Engineering Geoscience, 3(3): 463-463.
Khayam, M. and Mokhtari, D. (2003). Evaluation of tectonic activities based on alluvial fans morphology, Case: Northern Slope of Mish Dagh, Geographic Researches, 35(44): 1-10(Text in Persian). 
Luirei, K.; Bhakuni, S.S. and Kothyari, G.C. (2015). Drainage response to active tectonics and evolution of tectonic geomorphology across the Himalayan Frontal Thrust, Kumaun Himalaya, Geomorphology, 239: 58-72.
Madadi, A.; Rezaei-Moghadam, M. and Rajaei, A. (2004). Neotectonic activity analysis using geomorphology at the foothills northwest of Talesh (Baghrodagh), Physical Geography Research Quarterly, 36(48): 123-138 (Text in Persian). 
Maghsoodi, M. and Kamrani-Dalir, H. (2008). Evaluation of active tectonics in the regulation of river channels Case Study: Tajan River, Physical Geography Research Quarterly, 40(66): 37-55 (Text in Persian). 
Malik, J.N. and Mohanty, C. (2007). Active tectonic influence on the evolution of drainage and landscape: geomorphic signatures from frontal and hinterland areas along the Northwestern Himalaya, India, Journal of Asian Earth Sciences, 29(5): 604-618.
Mansouri, R. and Safari, A. (2015). Analysing of tectonic activity, Farahzad basin using geomorphic indicators, Scientific - Research Quarterly of Geographical Data (SEPEHR), 24(95): 93-105(Text in Persian). 
Mathew, M.J.; Menier, D.; Siddiqui, N.; Ramkumar, M.; Santosh, M.; Kumar, S. and Hassaan, M. (2016). Drainage basin and topographic analysis of a tropical landscape: Insights into surface and tectonic processes in northern Borneo, Journal of Asian Earth Sciences, 124: 14-27.
Molin, P.; Pazzaglia, F.J. and Dramis, F. (2004). Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila massif, Calabria, southern Italy, American journal of science, 304(7): 559-589.
Murris, R.J. (1984). Middle East: stratigraphic evolution and oil habitat, pp. 353-372.
Nath Sarma,  J. and Acharjee, S. (2013). Morphotectonic study of the Brahmaputra basin using geoinformatics, In EGU General Assembly Conference Abstracts, Vol. 15, p. 14001.
Ntokos , D.; Lykoudi, E. and Rondoyanni, T. (2016). Geomorphic analysis in areas of low-rate neotectonic deformation: South Epirus (Greece) as a case study, Geomorphology, 263: 156-169.
Ouchi, S. (1985). Response of alluvial rivers to slow active tectonic movement, Geological Society of America Bulletin, 96(4): 504-515.
Pérez-Peña , J. V., Azor, A., Azañón, J. M., & Keller, E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119(1), 74-87.
Pike, R.J. and Wilson, S.E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis, Geological Society of America Bulletin, 82(4): 1079-1084.
Ramirez-Herrera, M.T. (1998). Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt, Earth surface processes and landforms, 23(4): 317-332.
Romshoo, S.A.; Bhat, S.A. and Rashid, I. (2012). Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the Upper Indus Basin, Journal of earth system science, 121(3): 659-686.
Sarp, G. and Düzgün, Ş. (2012). Spatial analysis of morphometric indices: the case of Bolu pull-apart basin, western section of North Anatolian Fault System, Turkey, Geodinamica Acta, 25(1-2): 86-95.
Sarp, G. and Duzgun, S. (2015). Morphometric evaluation of the Afşin-Elbistan lignite basin using kernel density estimation and Getis-Ord’s statistics of DEM derived indices, SE Turkey, Journal of Asian Earth Sciences, 111: 819-826.
Schumm, S.A. (1986). Alluvial river response to active tectonics, Active tectonics, pp.80-94.
Seeber, L. and Gornitz, V. (1983). River profiles along the Himalayan arc as indicators of active tectonics, Tectonophysics, 92(4): 335341-337367.
Seif, A and Khosravi, Gh. (2011). Investigation of Active Tectonics in Zagros Trusth Belt Farsan Region, Physical Geography Research Quarterly, 42(74): 125-146 (Text in Persian). 
Siddiqui, S. (2014). Appraisal of active deformation using DEM-based morphometric indices analysis in Emilia-Romagna Apennines, Northern Italy, Geodynamics Res Int Bull, 1(3): 34-42.
Strahler, A.N. (1952). Hypsometric (area-altitude) analysis of erosional topography, Geological Society of America Bulletin, 63(11): 1117-1142.
Topal, S.; Keller, E.; Bufe, A. and Koçyiğit, A. (2016). Tectonic geomorphology of a large normal fault: Akşehir fault, SW Turkey, Geomorphology, 259: 55-69.
Troiani, F.; Galve, J.P.; Della Seta, M.; Piacentini, D. and Savelli, D. (2012). Correlation between SL index anomalies and slope failures in active mountain belts, In Proceedings of the 16 Joint Geomorphological Meeting, Rome, Italy.
Turowski, J.M.; Lague, D. and Hovius, N. (2009). Response of bedrock channel width to tectonic forcing: Insights from a numerical model, theoretical considerations, and comparison with field data, Journal of Geophysical Research: Earth Surface, 114(F3).
Wells, S.G.; Bullard, T.F.; Menges, C.M.; Drake, P.G.; Karas, P.A.; Kelson, K.I.; Ritter, J.B. and Wesling, J.R. (1988). Regional variations in tectonic geomorphology along a segmented convergent plate boundary pacific coast of Costa Rica, Geomorphology, 1(3): 239-265.
Whipple, K.X.; Kirby, E. and Brocklehurst, S.H. (1999). Geomorphic limits to climate-induced increases in topographic relief, Nature, 401(6748): 39-43.
Yamani, M.; Kamrani-Dalir, H. and Bagheri, S. (2013). Morphometric and geomorphic assessment criteria for determining the amount of neotectonic activity in Cheleh Basin (northwestern Zagros), Journal of Geographical Research, 29(97): 1-26 (Text in Persian).