بررسی ماهیت و ساختار وردش‌های جوی به هنگام بارش‌های بهاری فراگیر ایران

نوع مقاله : مقاله کامل

نویسندگان

1 دکتری اقلیم‏ شناسی، دانشگاه تبریز، گروه جغرافیای طبیعی

2 استادیار گروه آب و هواشناسی، دانشکدة منابع طبیعی، دانشگاه کردستان

3 دانشجوی دکتری اقلیم‏ شناسی، دانشگاه زنجان، گروه جغرافیای طبیعی

4 دانشجوی دکتری اقلیم ‏شناسی، دانشگاه تبریز، گروه جغرافیای طبیعی

چکیده

هدف از این مطالعه واکاوی وردش‏های جوی بارش‏های بهاری فراگیر ایران طی نیم قرن اخیر است. بدین منظور داده‏های بارش روزانة 283 ایستگاه سینوپتیکی طی دورة آماری 1961 تا 2010 از سازمان هواشناسی کشور استخراج و مرتب شد. پس از استخراج بارش‏های روزانة فصل بهار (فروردین، اردیبهشت، و خرداد)، به ‏منظور شناسایی الگوهای بارش فراگیر، داده‏های فشار سطح زمین از پایگاه دادة مرکز ملی پیش‏بینی محیطی و مرکز ملی پژوهش‏های جوی استخراج شد. سپس با اجرای تحلیل خوشه‏ای بر روی داده‏های فشار سطح زمین الگوهای همدید بارش‏های فراگیر بهاره شناسایی، بررسی، و تجزیه و تحلیل شد. نتایج حاصل از این مطالعه بیانگر آن است که بارش‏های بهاره، ضمن برخورداری از افت‏وخیز روزانه، ضریب تغییرات مکانی بسیار زیادی دارند؛ در این بین، به سمت ماه خرداد این تغییرات چشم‏گیرتر خواهد بود. نتایج حاصل از واکاوی وردش‏های جوی بارش‏های بهاری فراگیر ایران نشان داد که چهار الگوی کم‏فشار عربستان- کم‏فشار ایران مرکزی، کم‏فشار اروپا- کم‏فشار سودان، کم‏فشار خلیج فارس- پُرفشار سیبری، و الگوی چندهسته‏ای کم‏فشار خاورمیانه بیشترین نقش را در بارش‏های بهاری فراگیر ایران ایفا می‏کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nature and structure of the atmospheric circulation in pervasive rains of spring, Iran

نویسندگان [English]

  • Esmaeil Haghighi 1
  • Mohammad Hissein Gholizadeh 2
  • Mahdi Doostkamian 3
  • Fatemeh Ghaderi 4
1 PhD in Climatology, Physical Geography Department, University of Tabriz, Iran
2 Assistant Professor of Geography, Faculty of Natural Recourses, University of Kurdistan, Iran
3 PhD candidate in Climatology, Zanjan University, Iran
4 PhD candidate in Climatology, University of Tabriz, Iran
چکیده [English]

Introduction  
Atmospheric circulation patterns play a major role in temporal distribution and geographical distribution of precipitation. According to most researchers, the changes in climatic circulation patterns are controller of swing shifts, and also the intensity of precipitation and changes in atmospheric moisture content. Thus, increases in atmospheric temperature will follow moisture content. On the other hand, the changes in precipitation patterns may be affected by carbon dioxide. How much the increase in greenhouse gases can affect climate processes is still a question by many researchers. But it is obvious that the density increases the concentration of greenhouse gases directly or indirectly in climate elements, and that both space and time is affected. However, many studies have indicated that rainfall patterns in tropical areas, especially over the oceans, are heavily influenced by changes in temperature (SST) patterns at sea level.
Materials and methods
In order to perform an analysis of extensive spring rains in Iran, this study uses two groups of different environmental data.
1. Environmental Data: This group of data contains interpolation of daily spring rainfall quantities of station in April, May and June  throughout the country from 1961 to 2010 (4650 days). Using daily precipitation data from 551 synoptic and climatology stations have been measured by the National Meteorological Organization of Iran. Finally, by combining these three matrices, matrix dimensions can be obtained for the studied period (4650×7187). After identifying rainy days, the percent coverage (pervasiveness of precipitation) has been considered. Given that most researchers in their studies have selected fifty percent coverage as the threshold for pervasive rains, this study also uses the 50% threshold. Thus, 265 days have been selected and subsequently analyzed.
2. Atmospheric data: these data consists of sea level pressure and geopotential height at 500 hPa with zonal and meridional wind data. They have been received from the database of National Center for Environmental Prediction of National Center for Atmospheric Research (National Centers for Environmental Prediction / National Center for Atmospheric Research).
Results and discussion
The results of this study have indicated that spring rainfall of pervasive rains is increasing towards June. The results of the study have also revealed that four patterns, the Saudi low pressure, Iran central low pressure, the Europe low pressure, Sudan low pressure, the Persian Gulf low pressure, Siberian high pressure and the multi-core patterns of the Middle East low pressure have the highest influence on the pervasive rainfall in spring. In all four patterns, the convergence centers of 1000 hPa are consistent with low pressure systems. In 1000 hPa level moisture flux maps, humidity injection has been done mainly through the anticyclone on the Arabian Sea into the Sudanese system. It was strengthened by injecting humidity from the Red Sea and the Persian Gulf. Therefore, the cold air advection of high pressure centers on the system has been occurred due to its dynamic and moisture transport in the North to the Persian Gulf and Iraq. According to the maps, Front Genesis at 850 hPa at all the patterns is frontogeneses mainly in accordance with the transmission path. It is hot and humid weather that extends north.
Conclusion
Spring rains have also daily rise and fall with high spatial variation coefficients. Towards the June the changes become more significant. The results of the study have indicated that there are four patterns, the Saudi low pressure- Iran central low pressure, the Europe low pressure - Sudan low pressure, the Persian Gulf low pressure- Siberian high pressure pattern and the multi-core pattern of Middle East low pressure. These systems play the most important role in pervasive rainfall in spring on Iran.

کلیدواژه‌ها [English]

  • spring pervasive precipitation
  • moisture flux
  • frontogenesis
  • perceptible water
  • convergence and divergence
امام هادی، ماندانا و علیجانی، بهلول (1383). توده‏های هوای مؤثر در دورة سرد سال ایران، تحقیقات جغرافیایی، ص 33-53.
خورشیددوست، علی‏محمد؛ مفیدی، عباس؛ رسولی، علی‏اکبر و آزرم، کامل (1395). تحلیل همدید سازوکار وقوع بارش‏‏های سنگین بهاره در شمال غرب ایران، مجله مخاطرات محیط طبیعی، 5(8): 53-82.
رضایی بنفشه، مجید؛ شندی جعفری، فاطمه؛ حسین علی‏پور گزی، فرشته و علی‏محمدی، مجید (1395). تحلیل همدید فراوانی تابع همگرایی شار رطوبت در زمان رخداد بارش‏های سنگین شمال غرب ایران، نشریة جغرافیا و برنامه‏ریزی، 20(56): 107-126.
سلیقه، محمد و صادقی‏نیا، علیرضا (1389). بررسی تغییرات مکانی پُرفشار جنب حاره در بارش‏های تابستانه، نیمة جنوبی ایران، مجلة جغرافیا و توسعه، 17: 83-98.
شاهرخ‏وندی، سیدمنصور؛ غیور، حسنعلی و کاویانی، محمدرضا (1386). گردش بهنجار جو و پارامترهای شاخص مراکز عمل در فصل زمستان بر روی ایران، مجلة پژوهش‏های علوم انسانی دانشگاه اصفهان، 1: 85-100.
فتاحی، ابراهیم و حجازی‏زاده، زهرا (1384). طبقه‏بندی همدیدی فضایی توده‏های هوا در حوضه‏های جنوب غربی ایران، مجلة جغرافیا و توسعه، 6: 135-156.
یارنال، برنت (1390). اقلیم‏شناسی همدید و کاربرد آن در مطالعات محیطی، ترجمة ابوالفضل مسعودیان، چ2، اصفهان: دانشگاه اصفهان.
علیجانی، بهلول؛  کاویانی، محمدرضا (1390). مبانی آب‌وهواشناسی. چاپ سیزدهم، تهران: انتشارات سمت. صص 600.
 
Adler, R.F.; Gu, G.; Wang, J.J.; Huffman, G.J.; Curtis, S. and Bolvin, D. (2008). Relationships between global precipitation and surface temperature on internal and longer timescales (1979–2006), J. Geophy. Res., 113, D22104, doi: 10.1029/2008JD010536.
Allan, R.P. and Soden, B.J. (2010). Atmospheric warming and the amplification of precipitation extremes, Science, 321(5895), 1481–1484, doi:10.1126/science.1160787.
Alpert, P.; Abramski, R. and Neeman, B.U. (1992). The prevailing summer synoptic system in Israil-subtropical high, not Persian trough, Isr. J. Earth Sci, p. 39.
Alpert, P. and Reisin, T. (1986). An early winter polar Air mass penetration to the eastern Mediterranean, American meteorological society.
Bardossy, A. (1990). Space-time model for daily rainfall using atmospheric circulation patterns water Resources, Res earoh., 28: 1247-1260.
Bogardi, I.; Matyasovszky, I.; Bardossy, A. and Duckstein, L. (1994). A hydro climatological model of areal drought, Journal of Hydrol, 153: 245-264.
Chadwick, R.; Good, P.; Andrews, T. and Martin, G. (2014). Surface warming patterns drive tropical rainfall pattern responses to CO forcing on all timescales, Geophy. Res. Letts., 41: 610–615, doi: 10.1002/2013GL058504.
Chadwick, R.; Boutle, I. and Martin, G. (2013). Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the Tropics, J. Clime., 26: 3803–3822.
Chein-Jung, S.; Shaw, C.L.; Congbin, F.; Aiguo, D. and Ying, S. (2012). How much do precipitation extremes change in a warming climate?, Geophy. Res. Letts, 39: L17707, doi: 10.1029/2012GL052762, 2012.
Collins, M. (2013). Climate Change 2013: The Physical Science Basis, Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Long-term Climate Change: Projections, Commitments and Irreversibility, Cambridge Univ. Press, Cambridge, U.K., and New York.
Emori, S. and Brown, S. (2005). Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate, Geophy. Res. Letts., 32, L17706, doi: 10.1029/2005GL023272.
Fattahi, E. and Hejazizadeh, Z. (2005). Spatial Synoptic Classification air masses in the basins of southwestern Iran, Journal of Geography and Development, 6: 135-156.
Guangqi, L.; Sandy, P.; Harrison, I.; Colin, P.; Patrick, J. and Bartlein, K.I. (2013). Precipitation scaling with temperature in warm and cold climates: An analysis of CMIP5 simulations, Geophy. Res. Letts, 40: 4018–4024, doi:10.1002/grl.50730, 2013.
Imam Hadi, M. and Alijani, B. (2004). Air masses affecting Iran In the cold period of the year, Geographical Research Journal, 75: 34-53.
Ma, J. and Xie, S.-P. (2013). Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation, J. Clime., 26(8): 2482-2501.
Meehl, G.A.; Tebaldi, C.; Teng, H. and Peterson, T.C. (2007). Current and future US weather extremes and el Nio, Geophy. Res. Letts., 34, L20704, doi: 10.1029/2007GL031027.
Mofidi, A. and Zarrin, A. (2006). The Analysis of the nature and structure of High and Low pressure systems; Roshd; Teaching Geology, Part A, 46: p. 53-61; Part B, 47: 54-58. (In Persian)
Saaroni, H. and Ziv, B. (2000). Summer rain episodes in a Mediterranean climate, the case of Israil: Climatological-Dynamicak analysis, International Journal climatology 20.
Salighe, M. and Sadeghi Nia, A.R. (2010). Spatial variability analysis of subtropical high pressure in the showers of summer, the southern half of Iran, Journal of Geography and Development, 17: 83-98.
Shahrukh Wendy, S.M.; Ghayour, H.A. and Kaviani, M.R. (2007). Turn the norm atmosphere and action centers index parameters in winter on Iran, Isfahan University Journal of Human Sciences, 1: 85-100.
Trenberth, K.E. (1999). Conceptual framework for changes of extremes of the hydrological cycle with climate change, Clime. Change, 42(1): 327–339, doi: 10.1023/a: 1005488920935.
Wentz, F.J.; Ricciardulli, L.; Hilburn, K. and Mears, C. (2007). How much more rain will global warming bring?, Science, 317(5835): 233–235, doi:10.1126/science.1140746.
Xie, S.-P.; Deser, C.; Vecchi, G.A.; Ma, J.; Teng, H. and Wittenberg, A.T. (2010). Global warming pattern formation: Sea surface temperature and rainfall, J. Clime., 23(4): 966-986.
Yarnal, Brent (2011). Synoptic climatology and its application for environmental, studies Masoodian, A., Second Edition, University of Isfahan, Isfahan, p. 218.
Zhang, X.; Zwiers, F.W.; Hegerl, G.C.; Lambert, F.H.; Gillett, N.P.; Solomon, S.; Stott, P.A. and Nozawa, T. (2007). Detection of human influence on twentieth-century precipitation trends, Nature, 448(7152): 461–465, doi: 10.1038/nature06025.
 
Khorshid Dost, A.M.; Mofidi, A.; Rasuli, A.A.; Azram, k. (1395). The Synoptic analysis of the mechanism of the occurrence of heavy rainfall in the northwest of Iran, Journal of natural environmental hazards, 5 (8): 53-82.
 
Rezaei Banafsheh, M.; Shandi Jafari, F.; Hossein AliPour Gezi, F. and Ali Mohammadi, M. (1395). Synoptic analysis of the abundance of moisture flux convergence function at the time event of the Heavy Rainfall of Northwest of Iran, Journal of Geography and Planning, 20 (56): 107-126.
Alijani, B.; Kaviani, M.R. (2011). Basics of climatology. Thirteenth Edition, Tehran: Publication of the Samt. Pages 600.