ارزیابی برآورد تبخیر–‌تعرّق گیاه گندم با استفاده از الگوریتم سبال (مطالعۀ موردی: ایستگاه تحقیقات کشاورزی شهرستان حاجی‌آباد)

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم جغرافیایی، دانشگاه هرمزگان

2 دانشیار گروه علوم جغرافیایی، دانشگاه هرمزگان

3 استادیار گروه کشاورزی، دانشگاه هرمزگان

4 استادیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشگاه خوارزمی

چکیده

در اغلب روش‏هایی که تاکنون برای محاسبة تبخیر- تعرّق ارائه شده ‏است از اندازه‏گیری‏های نقطه‏ای برای تخمین این متغیر استفاده می‌شود. بنابراین، فقط در مقیاس محلّی مناسب است و به‌سبب پویایی و تغییرات منطقه‏ای تبخیر-‏ تعرّق (ET) قابل تعمیم به حوضه‌های بزرگ نیست. یکی از مشهورترین الگوریتم‌های سنجش از دور برای برآورد تبخیر- ‏تعرّق واقعی الگوریتم توازن انرژی در سطح زمین (سبال) است. در این الگوریتم از طریق برآورد همة مؤلفه‏های انرژی در سطح زمین ازجمله شار تابش خالص، شار گرمای خاک، و شار گرمای محسوس و با استفاده از معادلة توازن انرژی به محاسبة تبخیر- تعرّق اقدام می‌شود. هدف از این تحقیق ارزیابی تغییرات مکانی و زمانی تبخیر-‏ تعرّق واقعی گندم در محدودة ایستگاه تحقیقات کشاورزی شهرستان حاجی‌آباد با استفاده از الگوریتم سبال و چهار تصویر لندست 7‏/ ‏سنجنده+‏ ETMدر سال‏های 1383-1384 است. پس از مقایسة نتایج حاصل از الگوریتم سبال با داده‏های لایسیمتر، مشخص شد که میانگین تفاضل مطلق بین نتایج یادشده 7/0 میلی‌متر در روز و ضریب همبستگی برابر 83/0 است. بررسی آماری نتایج با آزمون تی نشان می‏دهد که اختلاف معنی‏داری بین نتایج حاصل از الگوریتم سبال و لایسیمتر وجود ندارد. همچنین، نتایج نشان می‏دهد که الگوریتم سبال از کارایی مناسبی برای برآورد تبخیر- تعرّق در منطقة مورد مطالعه برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of evapotranspiration of wheat using SEBAL algorithm (Case study: Agricultural Research Station of Haji Abad)

نویسندگان [English]

  • Elnaz Zamansani 1
  • Asadollah khoorani 2
  • Adnan Sadeghi-e-lari 3
  • Javad Sadidi 4
1 MSc in RS and GIS, Department of Geography, University of Hormozgan
2 Associate professor of Geography, University of Hormozgan
3 Assistant professor of agriculture, University of Hormozgan
4 Assistant professor of RS and GIS, University of Kharazmi
چکیده [English]

Introduction
Evapotranspiration (ET), which includes water evaporation from soil surface and vegetation transpiration, represents a fundamental process of the hydrological cycle. For water resource management, especially in arid and semi-arid regions, this is a key element.  
A lot of empirical methods have been developed in order to estimate ET from meteorological data since 50 years ago. The major problem of this method is that it can be used for evaluation of uniform regions near the station. This could not be extracted for other regions. Nowadays, remote sensing based methods often used for calculation of different parameters of ET, are suitable to extract different parameters of ET at proper temporal and spatial scales.
 
Materials and methods
One of the most famous algorithms for estimation of actual evapotranspiration is Surface Energy Balance Algorithm (SEBAL). This algorithm calculates all fluxes of the energy balance at the earth's surface including net radiation (Rn), soil heat flux (G), and sensible heat flux (H) from satellite images. Finally, actual ET is computed based on the energy balance at the earth surface. The aim of the current study is to evaluate the spatial and temporal variation of actual evapotranspiration of wheat in Agricultural Research Station of Haji Abad using SEBAL algorithm. The area has geographic coordinates 55° 54 'N, 28° 18' E, with an elevation of 900 m above mean sea level. For this purpose, 4 cloud free Landsat 7 / ETM+ images are used. Landsat 7 Enhanced Thematic Mapper Plus (ETM+) in cloud free satellite images were downloaded from the USGS Earth Explorer site [(http://edcsns17.cr.usgs.gov/NewEarthExplorer/)].
 
Table 1. Applied LANDSAT data to estimate actual evapotranspiration




Satellite / sensor


Date


Pass No




LANDSAT 7 /  ETM+


2005-01-25


p160r40




LANDSAT 7 /  ETM+


2005-02-10


p160r40




LANDSAT 7 /  ETM+


2005-03-30


p160r40




LANDSAT 7 /  ETM+


2005-04-15


p160r40




 
Results and discussion
In order to evaluate SEBAL estimation of evapotranspiration, recorded data of lysimeter (located in Agricultural Research Station of Haji Abad) is used for grass. The data is converted into ET of wheat based on a field study by Moradi, 2002 (Table 2). 
 
Table 2: converting ET of grass to wheat (Moradi, 2002)




time


Evapotranspiration of grass (lysimeter)


Correction Coefficient


Evapotranspiration of wheat (for 10 days)


Daily evapotranspiration of wheat




20 to 29 January 2005


22.8


0.92


20.97


2.09




8 to 18 February 2005


27.3


1.1


30.03


3.003




21 to 30 march 2005


46.5


1.1


51.15


5.11




9 to 19 April 2005


69


1.1


75.9


7.59




 
We have compared the results of the SEBAL algorithm with lysimeter data. In the comparison, the Mean Absolute Error between the results was 0.7 mm per day and the coefficient of determination of R2=0.77. Statistical analysis by T test does not show a significant difference between the results of the SEBAL algorithm and lysimeter. Therefore, the results show that the SEBAL algorithm has reasonable potential to estimate evapotranspiration in the study area. 
The difference between SEBAL and Lysimeter data show:

Cold and warm pixels; this is a very sensitive phase of SEBAL algorithm based on surface temperature and on leaf area index. Alen et al., 2002, used a well irrigated Alfalfa field as cold pixels, while we used wheat field.  
SEBAL algorithm used hourly meteorological data to estimate ET to estimate ET of Reference crop (grass) for daily average of these data. Evaporation is a function of temperature and wind speed. The effects of these parameters are simultaneous with the passing time of satellite. Thus, this plays an important role in estimation of ET.
SEBAL parameters are not calibrated for our study area.

 
These results confirm Hongjun et al. 2008; Rahimiyan et al. 2012; Teixeira et al. 2009 and Karimi et al. 2013.
 
Conclusion
Results of our study is different from Ayenew (2003). He believes that using SEBAL algorithm is not appropriate for a short period. Comparison between evapotranspiration from SEBAL algorithm and from Lysimeter shows a small difference in growing season, because SEBAL algorithm uses hourly weather data (at the passing moment of satellite) whereas mean daily data is used for Lysimerer. The evapotranspiration is a function of temperature and wind speed, so the effects of these parameters on the passing moment of satellite play an important role in estimation of the evapotranspiration.

کلیدواژه‌ها [English]

  • sebal algorithm
  • evapotranspiration
  • Landsat images
  • lysimeter
Adab, H; Amirahmadi, A. and Atabati, A. (2015). Relating Vegetation Cover with Land Surface Temperature and Surface Albedo in Warm Period of Year Using MODIS Imagery in North of Iran, 46(4): 419-434.

Allen, R.; Waters, R.; Tasumi, M.; Trezza, R. and Bastiaanssen, W. (2002). SEBAL, Surface energy balance algorithms for land, Idaho Implementation, Advanced Training and Users Manual, version 1.0.

Asgharzadeh, H and Sanaeinezhad, S. (2007). Estimating ET of plants using remote sensing and GIS in Tang-e-Kenesht, Kermanshah, National Conference on Management of Irrigation and Drainage Networks, Shadid Chamran University, Ahwaz.

Ayenew, T. (2003). Evapotranspiration estimation thematic mapper spectral satellite data in the Ethiopian rift and adjacent highlands, Journal of Hydrology, V(279): 83-93.

Bouwer, L.M.; Biggs, T.W.; Aerts, C.J.H. (2008). Estimates of spatial variation in evaporation using satellite-derived surface temperature and a water balance model, Hydrological Processes, 22: 670-682.

Budyko, M.I. (1974). Climate and Life. Academic Press: Orlando, 1974.

Dinpazhouh, Y.; Fakherifard, A.; Moghadam, M. and Jahanbakhsh, S. (2008). Investigation of reference ET in Iran Using Hargreaves method, 3rd conference of water resource management of iran, Tabriz University

Gowda, P.H.; Howell, T.A.; Paul, G.; Colaizzi, P.D.; Marek, T.H. and Copeland, K.S. (2011). SEBAL for Estimating Hourly ET Fluxes Over Irrigated and Dryland Cotton During BEAREX08, Proceedings of World Environmental and Water Resources Congress.

Farshi, A.; Shariati, M.; Ghaemi, M.; Shahabifar, M. and Tavallaei, M. (1997). Water requirement estimation of major agricultural crops of Iran, Agricultural Research, Education & Extension Organization (AREEO) press, Tehran.

Hongjun, Li;Li Zheng; Yuping Lei; Chunqiang Li; Zhijun Liu; Shengwei Zhang (2008). Estimation of water consumption and crop water productivity of winter wheat in North China Plain using remote sensing technology, Agricultural water management, 95: 1271-1278.

Hong, SH.; Hendrickx, J. and Borchers, B. (2009). Up-scaling of SEBAL derived evapotranspiration maps from Landsat (30 m) to MODIS (250 m) scale, J. of Hydrol, 370: 122-138.

Horiguchi, I. (1992). Agricultural Meteorology, Buneidou, Tokyo, Japan.

IndiaKishan, Singh Rawata; Anju Balab.; Sudhir Kumar Singhc.; Raj Kumar PaldaCentre (2017). Quantification of wheat crop evapotranspiration and mapping: A casestudy from Bhiwani District of Haryana, India, Agricultural Water Management, 187: 200-209.

Jia D., Kaishan S., Zongming W., Bai Z. and Dianwei L. (2013). Evapotranspiration Estimation Based on MODIS Products and Surface Energy Balance Algorithms for Land (SEBAL) Model in Sanjiang Plain, Northeast China.China Geographical Science.V( 23). N(1). P( 73–91).

Kaishan, S.; Zongming, W.; Bai, Z. and Dianwei, L. (2013). Evapotranspiration Estimation Based on MODIS Products and Surface Energy Balance Algorithms for Land (SEBAL) Model in Sanjiang Plain, Northeast China.China Geographical Science, 23(1): 73-91.

Karimi, A.; Farhadi, B.; Bansouleh, B. and Hesadi, H. (2013). Estimation of Regional Evapotranspiration Using LANDSAT TM Images and SEBAL Algorithm, Iranian Journal of lrrigation and Drainage, 6(4): 353-364.

Loranty, Michael M.; Goetz, Scott, J. and Beck, Pieter S.A. (2011). Tundra Vegetation Effects on Pan-Arctic Albedo, Environmental Research Letters, 6(2): 1-7.

Miryaghoubzadeh, M.; Solaimani, K.; Habibnejad roshan, M.; Shahedi, K.; Abbaspour, K. and Akhavan, S. (2014). Estimation and assessment of actual evapotranspiration using remote sensing data (Case study: Tamar basin, Golestan province, Iran), Irrigation & WaterEngineering, 4(15): 102-89.

Mobasheri, M.R.; Khavarian, H.; Ziaeian, P. and Kamaly, Gh. (2009). Evapo-Transpiration Assessment Using Terra/MODIS Images in the Gorgan General District, Human science Modares (geography), 11(1): 142-121.

Moradi, A. (2001). Determining reference evapotranspiration in HAJI ABAD, Hormozgan using lysimeter, comparing with climate based methods, Agricultural Research, Education & Extension Organization.

Rahimian, M. and Pourmohammadi, S. (2013). Estimation of wheat ET under stress condition based on remote sensing using SEBAL algourithm (a case study of Azadegan plain, Khoozestan), Journal of water research in agriculture, 26(2): 249-235.

Santos, C.; Bezerra, B.; Silva, B. and Rao, T. (2009). Assessment of daily actual evapotranspiration estimated by remote sensing algorithms, Anais XIV Simposio Brasileiro de Sensoriamento Remoto, Natal, Brasil, Simaie,E.; Homaee, M. and Norouzi, A.A. (2013). Evaluating SEBAL model to estimate evapotranspiration using MODIS and TM sensors data, 2(4): 29-40.

Simaie,E. ; Homaee, M. and Norouzi, A.(2013). Evaluating SEBAL model to estimate evapotranspiration using MODIS and TM sensors data , Journal of Water and Soil Conservation, Vol. 2, No. 4, Summer.

Soheilifar, Z.; Mirlatifi, S.M.; Naseri, A. and Assari, M. (2013). Estimating Actual Evapotranspiration of Sugarcane by Remote Sensing (A Case Study: Mirza Kochakkhan Sugarcane Agro-Industry Company Farms), 23(1): 151-163.

Teixeira, A.H. de C; Bastiaanssen, W.G.M.; Ahmad, M.D. and Bos, M.G. (2009). Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle Sa˜o Francisco River basin, Brazil Part A: Calibration and validation, Agri cultural and for estmeteorology, 149: 462- 476.

Tsouni, A.; Kontoes, Ch.; Koutsoyiannis, D. and Mamasis, N. (2008). Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Greece, Sensors, 5(8): 3586-3600.

Valizadeh, K .(2011). Estimate Evapotranspiration with Remote Sensing Techniques. Ph.D. Thesis. Tabriz University. P. 179.

Wagle, P.; Bhattarai, N. ; Gowda,P. ;Kakani ,V. (2017). Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS Journal of Photogrammetry and Remote Sensing . Volume 128, June 2017, Pages 192-203.

Wan, Z.; Wang, P. and Li., X. (2004). Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index Products for Monitoring Drought in the Southern Great Plains. USA. International Journal of Remote Sensing, 25(1): 61-72.

Zahedi, M. and Khatibi B., B.M. (2009). Hydrology, Samt, Tehran.