پهنه ‏بندی ریسک ‏پذیری سیل با استفاده از روش تصمیم ‏گیری چندمعیارۀ مبتنی بر استدلال شهودی دمپستر- شافر (مطالعۀ موردی: حوضۀ آبخیز نکارود)

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکتری گروه سنجش از دور و GIS، دانشگاه تهران

2 استادیار گروه سنجش از دور و GIS، دانشکدة جغرافیا، دانشگاه تهران

چکیده

سیل در میان سوانح طبیعی بیشترین خسارت را به بخش‏های مختلف کشور وارد می‏کند و به‏شدت در فعالیت‏های اقتصادی و اجتماعی تأثیر می‏گذارد. حوضة آبخیز نکارود به دلیل خصوصیات خاص محیطی مستعد رخداد سیل‏های متعدد و خطرناکی است. هدف از مطالعة حاضر پهنه‏بندی ریسک‏پذیری حوضة آبخیز نکارود ناشی از سیل با استفاده از روش تصمیم‏گیری چندمعیارة مبتنی بر استدلال شهودی است. برای برطرف‏کردن عدم قطعیت موجود در نظر کارشناسان متخصص در مورد درجة اهمیت معیارهای مؤثر در ریسک‏پذیری سیل، از تئوری استدلال شهودی و مدل دمپستر- شافر استفاده شده است. سپس، با بهره‏گیری از روش‏ تصمیم‏گیری چندمعیاره نقشة ریسک‏پذیری ناشی از سیل برای منطقه تهیه شده و در سطح زیرحوضه و کاربری‏های اراضی منطقه تحلیل شده است. بر اساس نتایج به‌دست‌آمده از بررسی طبقات مختلف ریسک‏پذیری، زیرحوضة پایاب نکا و سراب نکا به ترتیب بیشترین و کمترین مساحتِ مربوط به طبقة ریسک زیاد و خیلی زیاد را به خود اختصاص داده‏اند. همچنین، برای کاربری‏های جنگل انبوه، جنگل تنک، و مرتع نسبت مساحت طبقة ریسک کم و خیلی کم بیشتر از نسبت مساحت طبقة ریسک زیاد و خیلی زیاد است؛ ولی این نسبت برای کاربری‏های ساخته‏شده، زراعی، و باغ و آبی برعکس است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Flood Risk Assessment Using Multi-Criteria Decision Making Based on Dempster-Shafer Intuitive Reasoning (Case Study: Nekarood Basin)

نویسندگان [English]

  • Mohammad Karimi Firozjaei 1
  • Najmeh Neysani Samany 2
1 PhD Candidate in Remote Sensing and GIS, Faculty of Geography, University of Tehran, Iran
2 Assistant Professor of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Iran
چکیده [English]

Introduction
Among the natural disasters, flooding can cause heavy losses on the agriculture, fishery, housing and infrastructures. It strongly affects the economic and social activities. The use of modern science, especially remote sensing and GIS techniques helps the planners to assess the risk map of natural hazards such as floods for a region in the least possible time. Multi-Criteria Decision Analysis (MCDA) provides methods and techniques to analyze complex decision problems which often includes non-comparable data and metrics. Nekarood watershed with its special properties is prone to serious and devastating floods. The aim of this study is to assess the risk map of flooding in Nekarood Basin using multi-criteria decision and based on intuitive reasoning.  
Materials and Methods
According to the expert opinion, the two sets of effective criteria on flood risk and vulnerability has been used for the study area. Hydro-climatologic, topographic, land cover and geological factors as effective criteria on flood risk and population density are evaluated by remote sensing techniques in this study area. Primary data used in this study are digital elevation model, Satellite images of LANDSAT 8 for different months of 2016 to 2014 to provide vegetation maps, land use map, geological map, iso-rain, road network and waterways network, demographic statistics and information related to agriculture lands and gardens. To evaluate uncertainties in the expert's opinions about the importance of different criteria on flood risk, we used intuitive reasoning theory and Dempster-Shafer model. Then, we have made flood risk map by using the multi-criteria decision method. Using the mean and standard deviation, risk map was normalized for the study area and was classified into five classes; very low, low, medium, high and very high. Finally, the state of sub-basins and land uses was assessed, compared and analyzed in terms of risk.  
Results and Discussion
The results show that topographic factors and population density have the highest degree of importance on risk and vulnerability. To prepare flood risk map for the study area, the number 0.701 was considered for weight of risk factors and 0.299 for vulnerability weight. The results of the different risk classes show that downstream sub-basin of Neka watershed contains the high and very high risk classes and upstream Neka include the lowest area of high and very high risk classes. Generally, 87 percent of high and very high-risk areas are in downstream sub-basin of Neka. For dense forest, poor forest and rangeland, the area of low and very low risk classes is greater than that of high and very high risk classes. However, in agriculture land uses the area proportion of high and very high risk classes are more than that of low and very low risk classes. Results indicate that 59% of the land use of Nekarood watershed is located in high and very high risk classes. Neka city is located in very high risk class while 90% of Neka city is located in high and very high classes. Nekarood River, with a considerable amount of water discharge, passes through the city of Neka. The river is flowing  through mountainous channel, steep slopes and high altitude areas. This volume of water is flowing across Neka city through a single channel and finally discharges into the Caspian Sea. Since this channel has limited capacity during flood time, the flow submerges the channel banks and consequently leads to dangerous floods.
Conclusion
The results indicate that the use of new technologies such as remote sensing and GIS for mapping natural disasters such as flood risk is very efficient and useful. It was revealed that using multi-criteria decision making based on intuitive reasoning is very useful to assess flood risk of Nekarood watershed. The use of this model is possible by using many criteria, the degree of hazard, vulnerability and risk for the study area. Neka city due to its particular position has very high potential for flood risk and vulnerability. The results indicate the necessity that the managers and planners have to pay special attention in various agencies to flooding.

کلیدواژه‌ها [English]

  • risk
  • Flood
  • multi-criteria decision
  • intuitive reasoning
  • Nekarood

افشین، ی. (1373). رودخانه‏های ایران، وزارت نیرو.

امیدوار، ‏ک.؛ کیان‏فر، ‏آ. و عسکری، ‏ش.ا. (1389). پهنه‏بندی پتانسیل سیل‏خیزی حوضة آبریز کنجاتچم، پژوهش‏های جغرافیای طبیعی، 72(42): 73-90.‎

سازمان آب منطقه‏ای استان مازندران (1369). گزارشی از وضعیت هیدرولوژیکی رودخانة نکا و دشت جنوبی گرگان.

سیلاوی، ط. (1385). ارزیابی آسیب‏پذیری لرزه‏ای شهر تهران با به‏کارگیری مدل‏های فازی شهودی، پایان‏نامة کارشناسی ارشد، دانشکده فنی دانشگاه تهران.

عسگری، ع.ب. (1351). شهرستان اشرف البلاد، تهران.

لاجوردی، م.؛ خالدی، ش.؛ ستاری، ش. (1392). پهنه‏بندی پتانسیل سیل‏خیزی حوضة آبریز مردق‏چای (آذربایجان شرقی)، نشریة جغرافیا و برنامه‏ریزی، 17(44): 237-255.‎

لعلی نیت، ایلیا. (1395). پهنه‏بندی ریسک‏پذیری انسانی زمین‏لرزه در مناطق شهری با استفاده از مدل‏های مکان مبنا، پایان‏نامة کارشناسی ارشد، دانشکدة محیط زیست و انرژی، دانشگاه آزاد واحد علوم و تحقیقات.

ملکیان، آ.؛ افتادگان خوزانی، ا. و عشوری‏نژاد، غ. (1391). پهنه‏‏بندی پتانسیل سیل‏خیزی حوضة‎ آبخیز اخترآباد با استفاده از روش تحلیل سلسله‎‏مراتبی فازی، پژوهش‏های جغرافیای طبیعی، 44(4): 131-152.

Afshin, Y. (1994). Iran's rivers, Ministry of Power.

Askari, A.B. (1972). Ashraf Al-Bellad city, Tehran.

Dai, F.C.; Lee, C.F. and Zhang, X.H. (2001). GIS-based geo-environmental evaluation for urban landuse planning: a case study, Engineering geology, 61(4): 257-271.

Demir, V. and Kisi, O. (2016). Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey, Advances in Meteorology.

Dempster, A.P. (1968). A generalization of Bayesian inference, Journal of the Royal Statistical Society, Series B 30: 205-247.

Di Baldassarre, G.; Schumann, G. and Bates, P.D. (2009). A technique for the calibration of hydraulic models using uncertain satellite observations of flood extent, Journal of Hydrology, 367(3): 276-282.

Gamper, C.D.; Thöni, M. and Weck-Hannemann, H. (2006). A conceptual approach to the use of Cost Benefit and Multi Criteria Analysis in natural hazard management, Natural Hazards and Earth System Science, 6(2): 293-302.

Getahun, Y.S. and Gebre, S.L. (2015). Flood hazard assessment and mapping of flood inundation area of the Awash River Basin in Ethiopia using GIS and HEC-GEORAS/HEC-RAS Model, Journal of Civil and Environmental Engineering.

Hudson, P.F. (2003). Event sequence and sediment exhaustion in the lower Panuco Basin, Mexico, Catena, 52(1): 57-76.

Kolat, Ç.; Doyuran, V.; Ayday, C. and Süzen, M.L. (2006). Preparation of a geotechnical microzonation model using Geographical Information Systems based on Multicriteria Decision Analysis, Engineering geology, 87(3): 241-255.

Laali Niat, A. (2015). Earthquake human risk zoning in urban spaces using location-based models, master thesis, Islamic azad university Science and Reserch Branch.

Lajvardi, M.; Khaledi,  Sh.  and Sattari, Sh. (2013). Zoning of flooding potential in the Mardagh tea catchment area (East Azerbaijan), Journal of Geography and Planning, 17(44): 237-255.

Malkiyan, A.; Oftadegan Khozani, A.; Ashourinejad, Gh. (2012). Zoning of flooding potential in the Akhtrabad catchment area using fuzzy hierarchical analysis, Natural Geography Research, 44(4): 131-152.

Malpica, J.A.; Alonso, M.C. and Sanz, M.A. (2007). Dempster–Shafer Theory in geographic information systems: A survey, Expert Systems with Applications, 32(1): 47-55.

Maskrey, A. (1989). Disaster mitigation: a community based approach.

Mazandaran Regional Water Authority (1990). A report on the hydrological situation and the Naka River in southern Gorgan plain.

Merwade, V.; Cook, A. and Coonrod, J. (2008). GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping, Environmental Modelling and Software, 23(10): 1300-1311.

Meyer, V.; Scheuer, S. and Haase, D. (2009). A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany, Natural hazards, 48(1): 17-39.

Omidvar, K.; Kianfar, A. and Asgari, Sh. (2010). Zoning of flooding potential in the Knjanchm catchment area, Natural Geography studies, 42(72).

Qin, Q.M.; Tang, H.M. and Chen, H.K. (2011). Zoning of highway flood-triggering environment for highway in Fuling District, Chongqing. In 2011 International Conference on Photonics, 3D-imaging, and Visualization (pp. 820530-820530), International Society for Optics and Photonics.

Rashed, T. and Weeks, J. (2003). Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas, International Journal of Geographical Information Science, 17(6): 547-576.

Shafer, G. (1976). A mathematical theory of evidence (Vol. 1, pp. xiii+-297), Princeton: Princeton university press.

Silavi, T. (2006). Assessment seismic vulnerability in the Tehran using fuzzy model intuitive, master thesis, Technical Faculty of Tehran University.

Sinnakaudan, S.K.; Ab Ghani, A.; Ahmad, M.S.S. and Zakaria, N.A. (2003). Flood risk mapping for Pari River incorporating sediment transport, Environmental Modelling and Software, 18(2): 119-130.

Wang, Y.; Li, Z.; Tang, Z. and Zeng, G. (2011). A GIS-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region, Hunan, Central China, Water resources management, 25(13): 3465-3484.

Wolski, P.; Savenije, H.H.; Murray-Hudson, M. and Gumbricht, T. (2006). Modelling of the flooding in the Okavango Delta, Botswana, using a hybrid reservoir-GIS model, Journal of Hydrology, 331(1): 58-72.

Zou, Q.; Zhou, J.; Zhou, C.; Song, l. and Guo, J. (2013). Comprehensive flood risk assessment based on set pair analysis – variable fuzzy sets model and fuzzy AHP, Stoch Environ. Res. Risk Assess, 27: 525-549.