تحلیل جریان رودخانۀ کارون در سه مقیاس روزانه، ماهانه، و فصلی با استفاده از شاخص‌های نظریۀ آشوب

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 کارشناس‌ارشد، دانشکدة مهندسی عمران، دانشگاه سمنان

2 استادیار، دانشکدة مهندسی عمران، دانشگاه سمنان

3 استاد، دانشکدة مهندسی عمران، دانشگاه سمنان

چکیده

نظریة آشوب ابزاری مناسب برای تحلیل داده‏های دبی جریان رودخانه‏ها درنظر گرفته می‏شود. به دلیل ماهیت دینامیک و غیرخطی جریان رودخانه‏ها، یکی از چالش‏های مهمْ تشخیص رفتار جریان در مقیاس‏های زمانی مختلف است. در تحقیق حاضر، به منظور بررسی آشوب‏پذیری دبی جریان رودخانة کارون در سه مقیاس زمانی روزانه، ماهانه، و فصلی، از آمار 45ساله (1346- 1390) ایستگاه هیدرومتری ملّاثانی استفاده شده است. برای تعیین آشوبناکی جریان، سه روش‏ـ 1. بازسازی فضای فاز؛ 2. بُعد همبستگی؛ 3. بزرگ‏ترین نمای لیاپانوف‏ـ به‏کار رفته است. به منظور برآورد دو پارامتر زمان تأخیر و بُعد محاط، از روش میانگین اطلاعات متقابل و روش نزدیک‏ترین همسایة کاذب استفاده شده است. نتایج حاکی از آن است که در مقیاس ماهانه، به دلیل بُعد همبستگی غیرصحیح (704/2)، دبی جریان رودخانه آشوبناک و پیش‏بینی‏شدنی است. مقادیر بزرگ‏ترین نمای لیاپانوف برای مقیاس‏های روزانه، ماهانه، و فصلی به‏ترتیب 0017/0، 0093/0، و 0334/0 به‏دست آمده است. مثبت‏بودن این مقادیر نیز نشان‏دهندة آشوب و حساسیت نسبت به شرایط اولیة سیستم است. در مقیاس‏های روزانه و فصلی، روند تغییرات بُعد همبستگی در برابر بُعد محاط نشان داد که رفتار جریان تصادفی است و بنابراین جریان رودخانه پیش‏بینی‏نشدنی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Chaos Theory in Modeling and Analysis of River Discharge under Different Time Scales (Case Study: Karun River)

نویسندگان [English]

  • Fatemeh Adab 1
  • Hojjat Karami 2
  • Seyyed Farhad Mousavi 3
  • Saeid Farzin 2
1 MA in Civil Engineering, Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 Assistant Professor of Civil Engineering, Faculty of Civil Engineering, Semnan University, Semnan, Iran
3 Professor of Civil Engineering, Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده [English]

Introduction
One of the main issues in hydrology and water resources is investigation of river flow. Due to innovations and capabilities of the chaos theory, nowadays, chaos analyses are used to analyze river-flow time series. Since investigation of the presence of different characteristics at different time scales in rivers is one of the main challenges of hydrology in recent years, the aim of this paper is to study the behavior of river flow at different time scales. The behavior of river discharge can be studied precisely by applying nonlinear and chaotic analyses. The chaos theory, as the foundation of nonlinear dynamic systems has created great changes in understanding and expressing the mode of different phenomena in recent decades. This theory deals with the study of systems that at first glance may seem irregular; but in fact they are governed by clear rules. Such systems are very sensitive to primary conditions, so that seemingly minor inputs could have a significant impact on that. Such systems are called chaotic. With regard to recent studies, based on chaos theory for flow discharges, the chaotic or random nature of a system could be identified by using some discriminative indices. Despite chaotic studies conducted on the river discharges, chaotic analysis of flow discharge in Karun River has not been implemented for different time scales.
Materials and methods
In this study, the presence of chaos at daily, monthly and seasonal scales in discharge data of Karun River, Mollasani station, is discussed. Mollasani station is located downstream Ghir barrage (where, Dez, Gargar and Shotait River join together) and upstream Mollasani city. Daily, monthly and seasonal flow discharge data in Mollasani station (1967 to 2011) are used. Four nonlinear dynamic methods were used: 1) phase space reconstruction, 2) correlation dimension method, 3) largest Lyapunov exponent, and 4) spectral power. The state (phase) space is a useful tool for studying dynamic systems. According to this concept, a dynamic system can be described by means of a state space diagram. Each dynamic system consists of differential equations with partial derivatives. To determine these equations and their type, the embedding dimension and time delay parameter must be determined. The delay time could be obtained from the method of assessment of correlation function (ACF) or average mutual information (AMI). In this study, the average mutual information is used to estimate delay time of the dynamic system. In this method, time of first minimum occurrence in the average mutual information function is selected as the appropriate delay time. The embedding dimension is obtained from the false nearest neighbor (FNN) method. This algorithm provided information concerning optimal embedding dimension for the dynamic system.
Results and discussion
 The results showed that the daily times for daily, monthly and seasonal data are 97, 2 and 1, respectively, and the optimal embedding dimensions are 9, 6 and 2, respectively. To determine chaotic nature of the system, correlation coefficient was calculated. The correlation dimension at the monthly scales, due to saturation of the diagram, is obtained as 2.704. Therefore, Karun River system is chaotic at this scale. But at the daily and seasonal scales, the diagram's trend was ascending and as a result, the river discharge is random. Another indicative criterion of the chaotic system is the largest Lyapunov exponent. The behavior could be measured in each dimension by using the Lyapunov exponent. Presence of positive Lyapunov exponent is an important indicator of the chaotic system. In this study, elongation factors and largest Lyapunov exponent are calculated on the basis of Rosenstein's method. Taking the value of optimal embedding dimension as m, the value of this exponent can be calculated. In the absence of the optimal embedding dimension, this parameter is predicted based on different m values. At monthly tile scale, the largest Lyapunov exponent was positive (0.0093). The extent of band width at monthly scale is another proof of chaotic nature of this river's discharge. The chaotic nature of the discharge data can also be calculated by power range. These methods can estimate the chaotic or non-chaotic behavior and cannot estimate the complexity of data.
Conclusion
At daily and seasonal scales, according to correlation dimension, the river discharge is random (non-chaotic). But, flow is chaotic at the monthly scale. It seems that the geographical location of Mollasani station may affect the chaotic or randomness of Karun River's discharge.

کلیدواژه‌ها [English]

  • chaos theory
  • correlation dimension
  • largest Lyapunov exponent
  • Prediction
  • time scale
اعلمی، م.‏ت. و ملکانی، ل. (1392). بازسازی فضای حالت و بٌعد فرکتالی جریان رودخانه با استفاده از زمان تأخیر و بٌعد محاط، نشریة مهندسی عمران و محیط زیست، 43(70): 15-21.

پری زنگنه، م.: عطایی، م. و معلم، پ. (1389). بازسازی فضای حالت سری‏های زمانی آشوبی با استفاده از یک روش هوشمند، فصلنامة پژوهش در فناوری برق، 1(3): 3-10.

جانی، ر.؛ قربانی، م. و شمسایی، ا. (1394). تحلیل بارش ماهانة بندرانزلی با استفاده از نظریة آشوب در شرایط تغییر اقلیم، مجلةپژوهش آب ایران، 9(1): 29-39.

شقاقیان، م.‏ر. و طالب بیدختی، ن. (1388). بررسی وجود آشوب در جریان رود در مقیاس‏های زمانی گوناگون، نشریةمهندسی منابع آب، 2(3): 1-8.

طباطبایی، م.‏ر.؛ شاهدی، ک. و سلیمانی، ک. (1392). مدل شبکة عصبی مصنوعی برآورد غلظت رسوب معلق رودخانه‏ای به کمک تصاویر سنجندة مودیس (مطالعة موردی ایستگاه هیدرومتری ملّاثانی- رودخانة کارون)،نشریةآب و خاک،  27: 193-204.

انیس‏حسینی، م. و ذاکر مشفق، م. (1393).تحلیل و پیش‏بینی جریان رودخانة کشکان با استفاده از نظریة آشوب، مجلة هیدرولیک، 8(3): 45-61.

ادب، ف. (1395). شبیه‏سازی و تحلیل دبی جریان رودخانه‏های کارون و دز با استفاده از نظریة آشوب، پایان‏نامة کارشناسی ارشد مهندسی و مدیریت منابع آب، دانشگاه سمنان.

فهیم‏فرد، س.؛ شمسایی، ا.؛ فتاحی، م. و فرزین، س. (1394). بررسی تأثیر سد بر الگوی آشوبی انتقال بار معلق رود (مطالعة موردی: سد کرج)، مجلة مهندسی منابع آب، 8: 89-100.

مرادی‏زاده کرمانی، ف. (1389). تخمین جریان رودخانه با استفاده از نظریة آشوب و برنامه‏ریزی ژنتیک در مقیاس‏های زمانی مختلف، پایان‏نامة کارشناسی ارشد، دانشگاه تبریز.

هاشمی گلپایگانی، م. (1388). آشوب و کاربردهای آن در مهندسی، تهران: امیرکبیر.

Abrabanel, H. (1996). Analysis of Observed Chaotic Data, Springer-Verlag, New York.

Adab, F. (2016). Simulation and Analysis of River Flow of Karun and Dez Rivers Using Chaos Theory, MSc. Thesis, Semnan University.

Alami, M.T. and Malekani, L. (2014). Phase Space Reconstruction and Fractal Dimension Using of Delay Time and Embedding Dimension, Journal of Civil and Environmental Engineering, 43(1): 15-21 (Text in Persian).  

Banks, J.; Dragan, V. and Jones, A. (2003). Chaos: A Mathematical Introduction, Cambridge University Press.

Elshorbagy, A.; Simonovic, S. and Paun, U.S. (2002). Estimation of Missing Streamflow Data Using Principle of Chaos Theory, Journal of Hydrology, 255: 123-133.

Farzier, C. and Kockelman, K. (2004). Chaos Theory and Transportation System: An Instructive Example, Proc. of 83rd Annual Meeting of the Transportation Research Board, Washington D.C., USA.

Ghorbani, M.A.; Kisi, O. and Alinezhad, M.A. (2010). Probe Into the Chaotic Nature of Daily Streamflow Time Series by Correlation Dimension and Largest Lyapunov Methods, Applied Mathematical Modeling, 34: 4050-4057.

Hashemi Golpayegani, M. (2009). Chaos and Its Applications in Engineering, Amir Kabir University Press.

Jani, R.; Ghorbani, M. and Shamsaei, A. (2015). Analysis of Monthly Rainfall in the Bandar Anzali Using Chaos Theory under Climate Change Conditions, Iranian Water Research Journal, 9(1): 29-39 (Text I Persian).

Kockak, K.; Bali, A. and Bektasoglu, B. (2007). Prediction of Monthly Flows by Using Chaotic Approach, International Congress on River Basin Management, Antalya Turkey, pp. 553-559.

Lange, H. (2003). Time Series Analysis of Ecosystem Variables with Complexity Measures, InterJournal for Complex Systems, 250: 1-9.

Moradizadeh Kermani, F. (2010). Estimation of River Flow Using Chaos Theory and Genetic Programming in Different Time Scales. MSc. Thesis, Tabriz University.

Ott, E. (2002). Chaos in Dynamical Systems, Camdridge University Press, New York.

Pari Zanganeh, M.; Ataei, M. and Moallem, P. (2010). Phase Space Reconstruction of Chaotic Time Series Using an Intelligent Method, Journal of Transactions of Electrical Technology, 1(3): 3-10.

Regonda, S.K.; Sivakumar, B. and Jain, A. (2004). Temporal Scaling in River Flow: Can It be Chaotic?, Hydrological Sciences Journal, 49(3): 373-385.

Fahimfard, S.; Shamsaei, A.; Fattahi, M. and Farzin, S. (2015). Investigation of the Effect of Dam on Chaotic Pattern of Suspended Load Transport (Case Study: Karaj Dam), Journal of Water Resources Engineering, 8: 89-100 (Text in Persian).

Shaghaghian,  M.R. and Talebbeydokhti, N. (2009). Investigation of Chaos in River Flow at Different Time Scales, Water Resources Engineering, 2(3): 1-8 (Text in Persian).

Sivakumar, B. (2001). Rainfall dynamics at different temporal scales: A chaotic perspective, Hydrology and Earth System Sciences, 5(4): 645-652.

Shang, P.; Li, X. and Kamae, S. (2005). Chaotic Analysis of Traffic Time Series, Chaos, Solitons and Fractals, 25: 121-128.

Sivakumar, B. (2009). Nonlinear dynamics and chaos in hydrologic system: Latest developments and a look forward, Stochastic Environmental Research and Risk Assessment, 23: 1027-1036.

Tabatabaei, M.R.; Shahedi, K. and Soleymani, K. (2013). Artificial Neural Network Model of Estimating Suspended Solids Concentration of River Using Modis Images (Case Study: Mollasani Hydrometric Station- Karun River), Journal of Soil and Water, 27: 193-204 (Text in Persian).

Yabin, S. and Chi, D. (2014). Improving Numerical Forecast Accuracy with Ensemble Kalman Filter and Chaos Theory, Journal of Hydrology, 512: 540-548.