آشکارسازی گرد و غبار در حوضۀ آبریز جازموریان با استفاده از تکنیک‏ های چندطیفی در تصاویر سنجندۀ مادیس

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکتری سازه‏ های آبی دانشگاه شهید باهنر کرمان

2 دانشیار بخش مهندسی آب دانشگاه شهید باهنر کرمان

چکیده

یکی از چالش‏های مهمی که اخیراً گریبان‏گیر مردم استان‏های کرمان و سیستان و بلوچستان شده ظهور گرد و غبار است. خشک‏شدن تالاب فصلی جازموریان کانون تولید گرد و غبار در جنوب‏شرق کشور معرفی شده است. در این مطالعه قابلیت آشکارسازی گرد و غبار توسط شاخص‏های ارائه‏شده در مدل‏های جهانی بر روی تصاویر سنجندة مادیس در دو ماهوارة ترا و آکوا طی سال‏های 2003 تا 2017 پایش شد. بدین منظور، حد آستانة ارائه‏شده توسط محققان در شاخص‏های مورد مطالعه بومی‏سازی شد. برای بررسی صحت عملکرد روش‏های مورد مطالعه، الگوریتم‏های مورد استفاده بر روی تصاویر 04/01/2017 تا 07/01//2017 سنجندة مادیس اجرا شد. برای ارزیابی کارایی روش‏ها از دید افقی اندازه‏گیری‏شده در ایستگاه سینوپتیک و محصول عمق نوری سنجندة مادیس استفاده شد. نتایج نشان داد الگوریتم‏های مورد مطالعه عملکرد مناسبی در شناسایی پیکسل‏های آلوده به گرد و غبار دارند. همچنین، برای تحلیل مسیر انتقال گرد و غبار از مدل Hysplit استفاده شد. در نتیجة اجرای مدل Hysplit در سه کانون آشکارشده با الگوریتم‏های مورد بررسی، مشخص شد ذرات گرد و غبار سواحل دریای عمان (کوهای مکران)، دریای عمان، و حاشیة خلیج فارس را تحت تأثیر قرار می‏دهند که با نتایج محققان پیشین همخوانی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Detection of Dust Storms in Jazmoriyan Drainage Basin Using Multispectral Techniques and MODIS Image

نویسندگان [English]

  • Farzaneh Qaderi Nasab 1
  • Mohhamad Bagher Rahnama 2
1 PhD Candidate in Water Structures, Shahid Bahonar University of Kerman, Iran
2 Associate Professor of Water Structures, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

Introduction
Based on the importance of dust storm phenomenon, negative effects of the dusts on human health and social and economic consequences, it is essential to identify the dust source locations for planning and to eliminate the production factors of the dust storms. The last improvement in remote sensing makes a situation for using the satellite image for exploration of the dust sources. In this study, the MODIS image data were used for detection of the sources of dust storm in Jazmoriyan seasonal wetland and their corresponding watersheds. In order to achieve this target, we used three methods including Xie (2009), Zhao et al. (2010) and Liu (2011). The performance of the methods was investigated by AOD and horizontal visibility. In order to simulate the path of dust aerosol, we used HYSPLIT model Lagrangian approach for forward trajectory.
Materials and methods
Jazmurian is a dried wetland in a closed drainage basin in south-east Iran. Population growth, irrigation in surrounding farmland, dam building on feeding river, climate change and drought made the wetland to dry. The Jazmoriyan wetland, 300 km2 in area, is located between Sistan-va-Baluchistan and Kerman provinces, 58° 39' to 59° 14' E and 27° 10' to 27° 38' N. 
In this research, we have used field data (horizontal visibility), satellite data (MODIS level1B and Level 2 products), and meteorological data and Hysplit model output data.
The Xie (2009) method is based on decision tree through several indexes. Zhao et al. (2010) method was developed for dust detection on earth and ocean in daytime. Liu and Liu (2011) suggested the Thermal Infrared Integrated Dust Index (TIIDI) for separating the dust, sand surface and cloud. Representing the intensity of dust storm is the main advantage of this method. The most important feature of this method is to show the intensity of the dust storm.
Statistical analysis was conducted using Excel (Microsoft). Image processing was done with ENVI 5.3 software. Afterward the appropriate band for dust detection was identified. Then, some image was selected for extracting the thresholds.
Finally, based on extracted thresholds, dust storm over the Jazmoriyan watershed by MODIS images data on January 4, 2017, to January 7, 2017, was detected. The intensity of the dust was classified by TIIDI method, and dust source was introduced based on the region with the highest dust intensity. Three critical points of dust were identified with this method.  
Results and discussion
The results have demonstrated that these methods are useful for dust detection. The results of dust detection show that, there aren't any dust storms in Jazmoriyan on January 4, 2017. The dust storm began at 6:40 on January 5, 2017, in center of swamp Jazmotiyan and it had increasing trend until 9:55 at that time. Following of this process, the dust storm reaches to the highest txtent on January 6, 2017, at 7:25 and decreasing trend was started at 9 AM at the same day. The dust storm was finished in Jazmoriyan watershed in next day (January 7, 2017). Furthermore, the two-days forward air-mass trajectories with HYSPLIT model show that the dusty air masses at all altitudes are moved to the south-east part of Iran and will affect Oman Sea and Makran Mountain. The analysis of meteorological maps showed that a jet with a speed more than 30 m/s has covered all study area. It increased the dust storm possibility in the region. Based on the results, the extracted bands and thresholds in Jazmoriyan watershed is in agreement with other researchers. The results of dust detection obtained from MODIS confirm the results from obtained myd04 products and horizontal visibility.
Conclusion
Unsuitable distribution of synoptic station and lack of ground monitoring stations around the Jazmoriyan swamp are the issues in dust monitoring. MODIS image data can be used for dust storm detection. Performance of Xie (2009), Zhao 2010, et al. and TIIDI methods were investigated. The results of these methods using MODIS image data on January 4, 2017, to January 7, 2017, showed that the dust storm that began on January 5, 2017, was approximating at 6:40 AM. The dust had an increasing trend until the next day. The dust was spreading in a vast area on January 6, 2017, at 7:25 and completely was disappeared on January 7, 2017. In addition, the results of path tracing of aerosols of dust source represent the aerosol movement to the south-east Iran, Makran Coasts, and Persian Gulf. This is same as the results of other researcher.  

کلیدواژه‌ها [English]

  • dust detection
  • Jazmoriyan swamp
  • TIIDI method
  • AOD
ادارة کل حفاظت محیط زیست استان سیستان و بلوچستان (1393). تهیة نقشة پایة منابع اکولوژیک تالاب جازموریان و معرفی آن به عنوان یکی از مناطق تحت حفاظت سازمان حفاظت محیط زیست با استفاده از RS و GIS.

شمشیری، س.؛ جعفری، ر.؛ سلطانی، س. و رمضانی، ن. (1393). آشکارسازی و پهنه‏بندی ریزگردهای استان کرمانشاه با استفاده از تصاویر ماهواره‏ای MODIS، بوم‏شناسی کاربردی، 3(8).

عطایی، ش.؛ محمدزاده، ع. و آبکار، ع.ا. (1394 الف). شناسایی گرد و غبار با استفاده از روش درخت تصمیم‏گیری از تصاویر سنجندة مادیس، مجلة علمی‏- پژوهشی علوم و فنون نقشه‏برداری، 4(4): 151-160.

عطایی، ش.؛ آبکار، ع.ا. و محمدزاده، ع. (1394 ب). شناسایی گرد و غبار با استفاده از شاخص TIIDI بهبودیافته و به‏کارگیری داده‏های سنجندۀ مادیس، محیط‏شناسی، 41(3): 563ـ572.

مصباحی، ح. (1392). مدل‏سازی منابع آب با استفاده از نرم‏افزار MODSIM با هدف نگرش یک‏پارچه به چالش‏ها و راهکارهای حوضة آبریز هامون جازموریان، پنجمین کنفرانس مدیریت منابع آب.

Ackerman, S.A. (1989). Using the radiative temperature difference at 3.7 and 11 μm to tract dust outbreaks, Remote Sensing of Environment, 27(2): 129-133.

Ackerman, S.A. (1997). Remote sensing aerosols using satellite infrared observations, Journal of Geophysical Research: Atmospheres, 102(D14): 17069-17079.

Ataei, Sh.; Abkar, A.A. and Mohammadzadeh, A. (2015a). Dust detection using improved TIIDI and applying MODIS sensor data, Journal of Environmental Studies, 41(3): 572-563.

Csavina, J.; Field, J.; Félix, O.; Corral-Avitia, A.Y.; Sáez, A.E. and Betterton, E.A. (2014). Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates, Science of The Total Environment, 487: 82-90.

Draxler, R.R. and Hess, G.D. (1998). An overview of the HYSPLIT_4 modelling system for trajectories, Australian meteorological magazine, 47(4): 295-308.

Environmental Protection Agency of Sistan and Baluchestan provinc (2014). Preparation of the ecosystem resources map of Jazmourian wetland and its introduction as one of the protected areas of the Environmental Protection Agency using RS and GIS.

Fu, Q.; Thorsen, T.J.; Su, J.; Ge, J.M. and Huang, J.P. (2009). Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations, Journal of Quantitative Spectroscopy and Radiative Transfer, 110(14): 1640-1653.

Guo, J.; Xia, F.; Zhang, Y.; Liu, H.; Li, J.; Lou, M. ... and Zhai, P. (2017). Impact of diurnal variability and meteorological factors on the PM 2.5-AOD relationship: Implications for PM 2.5 remote sensing, Environmental Pollution, 221: 94-104.

Huang, J.; Fu, Q.; Su, J.; Tang, Q.; Minnis, P.; Hu, Y. ... and Zhao, Q. (2009). Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints, Atmospheric Chemistry and Physics, 9(12): 4011-4021.

Huang, J.; Wang, T.; Wang, W.; Li, Z. and Yan, H. (2014). Climate effects of dust aerosols over East Asian arid and semiarid regions, Journal of Geophysical Research: Atmospheres, 119(19).

Kaufman, Y.J. and Tanré, D. (1998). Algorithm for remote sensing of tropospheric aerosol from MODIS. NASA MODIS Algorithm Theoretical Basis Document, Goddard Space Flight Center, 85: 3-68.

Kaufman, Y.J.; Tanré, D.; Gordon, H.R.; Nakajima, T.; Lenoble, J.; Frouin, R. ... and Teillet, P.M. (1997). Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect, Journal of Geophysical Research: Atmospheres, 102(D14): 16815-16830.

Li, X.; Ge, L.; Dong, Y. and Chang, H.C. (2010). Estimating the greatest dust storm in eastern Australia with MODIS satellite images. In Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International (pp. 1039-1042). IEEE.

Liu, Y. and Liu, R. (2011). A thermal index from MODIS data for dust detection. In Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International (pp. 3783-3786). IEEE.

Mesbahi, H. (2013). A unified approach Water Resources Modeling to Challenges and Solutions in the Watershed Basin Hamoun Jazmourian Using MODSIM with the Purpose of Unified Approach, The Fifth Conference on Water Resources Management, Tehran.

Miller, S.D. (2003). A consolidated technique for enhancing desert dust storms with MODIS, Geophysical Research Letters, 30(20).

Moulin, C.; Lambert, C.E.; Dayan, U.; Masson, V.; Ramonet, M.; Bousquet, P. ... and Bergametti, G. (1998). Satellite climatology of African dust transport in the Mediterranean atmosphere, Journal of Geophysical Research: Atmospheres, 103(D11): 13137-13144.

Pineda-Martinez, L.F.; Carbajal, N.; Campos-Ramos, A.A.; Noyola-Medrano, C. and Aragón-Piña, A. (2011). Numerical research of extreme wind-induced dust transport in a semi-arid human-impacted region of Mexico, Atmospheric ejenvironment, 45(27): 4652-4660.

Qu, J.J.; Hao, X.; Kafatos, M. and Wang, L. (2006). Asian dust storm monitoring combining Terra and Aqua MODIS SRB measurements, IEEE Geoscience and Remote Sensing Letters, 3(4): 484-486.

Rashki, A.; Arjmand, M. and Kaskaoutis, D.G. (2017). Assessment of dust activity and dust-plume pathways over Jazmurian Basin, southeast Iran, Aeolian Research, 24: 145-160.

Reidmiller, D.R.; Hobbs, P.V. and Kahn, R. (2006). Aerosol optical properties and particle size distributions on the east coast of the United States derived from airborne in situ and remote sensing measurements, Journal of the atmospheric sciences, 63(3): 785-814.

Riehl, H. (1961). Jet streams of the atmosphere, US Government Printing Office.

Rolph, G.; Stein, A. and Stunder, B. (2017). Real-time environmental applications and display system: Ready, Environmental Modelling & Software, 95: 210-228.

Shamshiri, S.; Jafari, R.; Soltani, S. and Ramazani, N. (2014). Dust detection and mapping in Kermanshah province using satellite imagery of Modis, Iranian Journal of Applied Ecology, 3(8).

Shao, Y. and Dong, C.H. (2006). A review on East Asian dust storm climate, modelling and monitoring, Global and Planetary Change, 52(1): 1-22.

Stunder, B.J. (1997). NCEP model output-FNL archive data: TD-6141. Prepared for National Climatic Data Center (NCDC). Technical report, NOAA Air Resources Laboratory, Silver Spring, MD.This document and archive grid domain maps are also available at http://www. arl. noaa. gov/ss/transport/archives. html.

Tian, J. and Chen, D. (2010). Spectral, spatial, and temporal sensitivity of correlating MODIS aerosol optical depth with ground-based fine particulate matter (PM2. 5) across southern Ontario, Canadian Journal of Remote Sensing, 36(2): 119-128.

Wang, J. and Christopher, S.A. (2003). Intercomparison between satellite‐derived aerosol optical thickness and PM2. 5 mass: implications for air quality studies, Geophysical research letters, 30(21).

Li, X., Ge, L., Dong, Y., & Chang, H. C. (2010, July). Estimating the greatest dust storm in eastern Australia with MODIS satellite images. In Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International (pp. 1039-1042). IEEE.

Xie, Y. (2009). Detection of smoke and dust aerosols using multi-sensor satellite remote sensing measurements, George Mason University.

Zhang, L.; Cao, X.; Bao, J.; Zhou, B.; Huang, J.; Shi, J. and Bi, J. (2010). A case study of dust aerosol radiative properties over Lanzhou, China. Atmospheric Chemistry and Physics, 10(9): 4283-4293.

Zhao, C., Chen, S., Leung, L. R., Qian, Y., Kok, J., Zaveri, R., & Huang, J. (2013). Uncertainty in modeling dust mass balance and radiative forcing from size parameterization. Atmospheric Chemistry & Physics Discussions, 13(7).

Zhao, T.X.P.; Ackerman, S. and Guo, W. (2010). Dust and smoke detection for multi-channel imagers, Remote Sensing, 2(10): 2347-2368.