تحلیل کمّی و مورفولوژیکی نیمرخ طولی رودخانه‏ های البرز شمالی در استان مازندران

نوع مقاله : مقاله کامل

نویسندگان

1 دانشیار ژئومورفولوژی، گروه جغرافیا، دانشکدة علوم انسانی و اجتماعی، دانشگاه مازندران

2 کارشناس ‏ارشد ژئومورفولوژی، دانشگاه مازندران

چکیده

نیمرخ طولی رود یکی از مؤلفه‏های اساسی سیستم رودخانه‏ای است. در این تحقیق نیمرخ طولی 15 رودخانه در البرز شمالی، که بخشی از حوضة آبریز دریای خزر هستند، بررسی شده‏اند. نخست، با استفاده از مدل ارتفاعی رقومی، با قدرت تفکیک 12.5 متر شبکه‏های رودخانه‏ای شناسایی و نیمرخ طولی آن‏ها ترسیم شد. شکل نیمرخ طولی رود با شاخص تقعر (CI) و شاخص SLK اندازه‏گیری شد. سپس، شاخص گرادیان طولی رود (SL) برای هر قطعه از نیمرخ طولی محاسبه شد و با استفاده از نقشه‏های سنگ‏شناسی و گسل‏ها تفسیر شد. نتایج نشان می‏دهد که شکل نیمرخ طولی رودخانه‏های البرز شمالی در دره‏های عرضی به‏صورت مقعر با چندین شکستگی است که بیانگر غلبة فرسایش در بلندمدت است. در دره‏های طولی البرز شمالی، نیمرخ طولی رودخانه‏ها به‏صورت محدب است که ناشی از ساختار چین‏خوردگی و بالاآمدگی سنگ‏هاست. بررسی شاخص SL نشان می‏دهد که عامل سنگ‏شناسی و گسل‏ها به‏ترتیب 53 و 45درصد در ایجاد شکستگی در نیمرخ طولی این رودها نقش داشته‏اند. از مجموع 98 خط گسلی، که به‏صورت عرضی رودخانه‏ها را قطع کرده‏اند، فقط بیست‏درصد آن‏ها موجب شکستگی در نیمرخ طولی رود شده‏اند. اثر گسل در نیمرخ طولی رودخانه‏های غرب و شرق استان مازندران به‏ترتیب 70 و 30درصد بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Quantitative and Morphological Analysis of Longitudinal Profile of Northern Alborz Rivers in Mazandaran Province

نویسندگان [English]

  • Reza Esmaeili 1
  • Maryam Salehi 2
1 Associate Professor of Geomorphology, Department of Geography, University of Mazandaran, Iran
2 Master of Geomorphology, University of Mazandaran, Iran
چکیده [English]

Introduction
The longitudinal profile of river is one of the main components of the fluvial system. It is result from the interaction between lithology, tectonics, fluvial incision and base level change. The longitudinal profile of the rivers that are in a Equilibrium state have concave form, but several factors cause changes to the longitudinal profile of the river, including lowering base level, rock resistance, structural control, sediment input, non-fluvial processes, bed load effects, and human changes. Alborz Mountains are considered as one of the geomorphological zone of Iran, which geological, climatological and vegetation characteristics have created a special geographic landscape. In this study, longitudinal profiles of the northern Alborz rivers (Mazandaran province), as part of the Caspian Sea basin, have been investigated in this research. The aim of this research is to make a quantitative analysis of the longitudinal profile of the rivers in the region.
Methods and material  
The longitudinal profiles of 15 rivers in the northern Alborz were investigated by quantitative measures. The drainage network was extracted by the 12.5-m DEM and longitudinal profiles of the fifteen trunk channels were extracted using the ArcGIS 10.3. Geological maps were used to interpret lithology and fault distribution. The form of longitudinal profiles was measured by the concavity index (CI) and SLK index. The longitudinal gradient index (SL) was also calculated for each segment of the profiles. The concavity index was computed based on deviations from a straight line profile (Philips and Lutz, 2008). The SL Index analysis was performed with Hack's (1973) method. The SLK index for the longitudinal profile of the river was calculated by normalizing the distances in the horizontal axis and the elevation in the vertical axis.
To normalize the values ​​(SLK), in the horizontal axis of the graph, the normalized distances are represented as (d / D), where d is the distance between the specific points along the longitudinal profile and D is the total length of the profile. In the vertical axis of normalized height (e / E) the e is the elevation of specific points along the longitudinal profile and E is the elevation difference between the beginning and the end of the longitudinal profile (Vojtco et al., 2012). The maximum amount of concavity along the SLK profile was determined as Zmax.
Results and discussion
The northern Alborz Rivers do not have smooth concave profiles and there are numerous knickpoints in their longitudinal profiles. In all cases, the best fit (R2) of regression has been matched with polynomial equations of degrees 2, 3 and 4.  The coefficient of determination of these regression equations was very high (>0.96). Some of the rivers such as Kheyrood, Kojur and Noor have a convex profile with concavity index of -4, -4, and -11, respectively. A number of other rivers such as Tajen, Babol, Sardabrood and Chalakrood with CI 8, 7.5, 9 and 8, respectively, have more concavity than other rivers.
Based on the relative concavity index (CIrel), 20% of the longitudinal profile of the North Alborz in the convex form (CIrel <0), 53% had a relatively straight or very low concavity (0 <CIrel <0.2), 27% moderate concavity. No river has a very high relative concavity index (more than 0.5). The results obtained from the Z max of SLK index show that khojour and Noor Rivers have a convex longitudinal profile with negative coefficients. Other rivers also have a Z max between 0.2 and 0.3 and Babolrod has the highest value of 0.7 compared with other rivers. In each of the longitudinal profiles of the rivers, SL values ​​were calculated in different segments. The highest and lowest mean values ​​of SL are related to the rivers of Kojur and Babol, respectively. Changes in SL values ​​and Knickpoints were investigated based on three factors of tectonic, lithology and human. A total of 98 faults crossed the rivers in the study area have only caused 20 knickpoints, which 70% are located in the western part and 30% in the eastern part of the northern Alborz. Lithology factor in 53% of the cases has changed the longitudinal gradient and the SL values, which is 33 percent in the western part and 20 percent in the eastern part of the northern Alborz.
Given the good correlation coefficient (0.73) between the SLK index and the CI index, the SLK index is used for clustering. The studied rivers were classified into three groups based on concavity of longitudinal profile and the position of maximum concavity. The first group includes rivers with a concavity of between 0.13 and 0.47 and the maximum concavity is in the second quartile of the profile. In this group, 80% of the North Alborz Rivers are located in the state and they are all in the transverse valleys. In the second group, the value of concavity index of longitudinal profile was negative, that is, they have a convex shape and maximum convexity is in the third quartile. The rivers in the longitudinal valley are in this group in which the concavity is less than 0.1 and the maximum concavity is in the second quartile of the profile. The analysis of longitudinal gradient index (SL) in the northern Alborz Rivers shows that 53% of knickpoints are due to lithologic changes, 45% due to the activity of faults and 2% due to dam construction. In the 98 fault lines that crossing rivers, only 20% of them have broken the longitudinal profile. The effects of lithology on longitudinal profile were analyzed by statistical test. The results show that the sig value is less than 0.05 and the hypothesis is rejected zero for Safarood, Cheshmeh Kileh, Sardabrood, Chalous, Noor, Heraz, Talar and Neka catchments. The type of lithology has a significant difference in longitudinal profile formation. The effect of faults in the longitudinal profile of the rivers in west and east parts of Mazandaran province was 70% and 30%, respectively.
Conclusion
In the longitudinal valleys, the rivers have a convex profile, where uplift (active tectonics) is dominant. In these valleys, the rate of uplift is greater than the amount of river incision and the river can not create an equilibrium profile.The longitudinal profile of the rivers in the transverse valleys is concave–convex with erosion steps that indicate long-term predominance of erosional processes. Their profile is due to the high altitude difference, short distance to the base level (Caspian Sea) and lithological resistance. It seems that river icision has overcome the tectonics and the lithological factor has more effect on the longitudinal profile of the Northen Alborz Rivers.

کلیدواژه‌ها [English]

  • river lonitudinal profile
  • Cancavity Index
  • Northen Alborz
  • Mazandaran
اسماعیلی، ر.؛ متولی، ص. و حسین‏زاده، م.م. (1391). بررسی اثرات مورفوتکتونیک در نیمرخ طولی رودخانة واز؛ البرز شمالی، استان مازندران، فصل‏نامة پژوهش‏های ژئومورفولوژی کمی، ۳: 1۰۱-1۱۴.
بیاتی خطیبی، م. (1388). تحلیل اثرات فعالیت‏های نئوتکتونیکی در نیمرخ طولی رودخانه‏های حوضة قرنقوچای واقع در دامنه‏های شرقی سهند، فصل‏نامة فضای جغرافیایی، 27: ۷۹-۱۱۳.
جمال‏آبادی، ج.؛ زنگنه اسدی، م.ع.؛ فاتحی، ز. و رباط سرپوشی، م. (1395). بررسی تأثیر تکتونیک در ویژگی‏های کمّی شبکه‏های زهکشی (مطالعة موردی: حوضه‏های بار، بقیع، و قلعه‏میدان در دامنة جنوبی رشته‏کوه بینالود)، پژوهش‏های ژئومورفولوژی کمی، 16: ۸۷-۱۰۳.
حسین‏زاده، م.م. و اسماعیلی، ر. (1394). ژئومورفولوژی رودخانه‏ای: مفاهیم، اشکال،و فرایندها، تهران: دانشگاه شهید بهشتی.
درویش‏زاده، ع. (1370). زمین‏شناسی ایران، تهران: امیرکبیر.
روستایی، ش. و نیری، ه. (1390). تحلیل کمی تأثیر لیتولوژی و تکتونیک بر پروفیل طولی رودخانه در حوضة آبریز رودخانة مهاباد، فصل‏نامة جغرافیا و توسعه، 24: ۱۳۷-1۵۳.
سیف، ع. و خسروی، ق. (1389). بررسی تکتونیک فعال در قلمرو تراست زاگرس منطقة فارسان، پژوهشهای جغرافیای طبیعی، 42: 1۲5-1۴5.
شیخ‏الاسلامی، م.ر.؛ جوادی، ح.ر.؛ اسدی سرشار، م.؛ آقاحسینی، ا.؛ کوه‏پیما، م. و وحدتی دانشمند، ب. (1393). دانشنامةگسله‏های ایران، چ ۲، تهران: سازمان زمین‏شناسی و اکتشافات معدنی کشور.
صابری، ا.؛ یساقی، ع.؛ جمور، ی. و معدنی‏پور، س. (1395). برآورد تغییرات نرخ برخاستگی با استفاده از ترازیابی دقیق در البرز مرکزی، شمال ایران، پژوهش‏هایدانشزمین، ۷(۲۵): ۶۲-۷۴.
عباسی، م.؛ جعفری اقدم، م.؛ رضاعلی، ق. و محمدی، ا. (1391). بررسی تکتونیک فعال زاگرس شمال غربی با استفاده از تحلیل شبکة زهکشی رودخانه شواهد ژئومورفولوژیکی و داده‏های GPS (مطالعة موردی: حوضة آبریز رودخانة آسمان‏آباد)، فصل‏نامة جغرافیای طبیعی، 18: ۵۹-۷۰.
علائی طالقانی، م. (1394). ژئومورفولوژی ایران، چ ۹، تهران: قومس.
قنواتی، ع.؛ صفاکیش، ف. و مقصودی، ی. (1396). ارزیابی تکتونیک فعال در زیرحوضه‏‏های جراحی‏- زهره بر پایۀ تحلیل مورفوتکتونیکی و اثرهای آن بر میدان‏‏های نفتی حوضۀ مورد مطالعه، پژوهشهای جغرافیای طبیعی، 49: 2۲۱-2۴۰.
کریمی، ب.؛ شرفی، س.؛ مقصودی، م.؛ کریمی، س. و سلطانی، ش. (1391). بررسی نقش مورفوتکتونیک در فرسایش و تغییرات نیمرخ طولی رودخانه‏ها با استفاده از توابع ریاضی (مطالعة موردی: رودخانة الوند در غرب استان کرمانشاه)، فصل‏نامة پژوهش‏های فرسایش محیطی، ۲(۶): ۷۳-۹۵.
کریمی، ه.؛ قنواتی، ع.؛ یمانی، م. و صفاری، ا. (1395). تأثیر تکتونیک در تغییرات نیمرخ طولی رودخانه‏ها (مطالعة موردی: رودخانة علامرودشت در جنوب استان فارس)، فصل‏نامة پژوهش‏های ژئومورفولوژی کمی، ۵(۲): ۳۷-۵۲.
گورابی، ا. و کیارستمی، ف. (1394). ارزیابی زمین‏ساخت حوضه‏های آبریز با استفاده از اختصاصات ژئومورفولوژیک در قالب الگوی TecDEM (مورد مطالعه: حوضۀ آبریز رودک در شمال شرق تهران)، پژوهشهای جغرافیای طبیعی، 47: 4۶۵- 4۷۹.
گوهری، م.؛ تاج‏بخش، م.؛ سربازی، م. و نعیمی قصابیان، س.ن. (1393). بررسی فعالیت‏های تکتونیکی بر ژئومتری رودخانه (مطالعة موردی: رودخانة خرتوت از حوضة آبخیز اترک)، جغرافیا و مخاطرات محیطی، 9: ۳۷-۴۹.
مقصودی، م.؛ نویدفر، ا.؛ قنبری، م. و رضایی، ع. (1394). تحلیل کمی تأثیر لیتولوژی و تکتونیک بر نیمرخ طولی رودخانه (مطالعة موردی: رودخانة اوجان‏چای، فصل‏نامة پژوهش‏های ژئومورفولوژی کمی، ۴(۱): 1۰۴-1۱۷.
مقصودی، م.؛ زمان‏زاده، س.م.؛ یمانی، م. و حاجی‏زاده، ع. (1396). بررسی تکتونیک فعال حوضة‏ آبریز مارون با استفاده از شاخص‏های ژئومورفیک، فصل‏نامة پژوهش‏های ژئومورفولوژی کمی، شماره پیاپی 23: ۳۷-۵۹.
مهرپویان، م.؛ جامی، م.؛ سرحدی، ن. و پورکرمانی، م. (1396). تأثیر فعالیت تکتونیکی بر مورفولوژی نیمرخ طولی رودخانه (مطالعة موردی: رودخانة پل رود (شمال ایران))، فصل‏نامة جغرافیا و توسعه، 48: ۶۳-۷۴.
Abbasi, M.; Jafari Aghdam, M.; Reza Ali, G. and Mohammadi, A. (2012). Investigation of the Northwest Zagros Active Tectonics Using Geomorphologic Evidence and GPS Data Analysis of the River Drainage Network (Case Study: Acre Abad River Basin), Journal of Physical Geography, 5(18): 59-70.
Alaei Taleghani, M. (2015). Geomorphology of Iran, Ghomes publication, Ninth edition, Tehran.
Ambili, V. and Narayana, A.C. (2014). Tectonic effeonthelongitudinal profiles of the chaliyar river and its tributaries, southwest india, Geomorphology, 217: 37-47.
Bayati Khatibi, M. (2009). Analysis of the effects of neotectonic activities on the longitudinal profile of the rivers of the Qornukuchai basin located in the eastern slopes of Sahand, Geographic Space, 27: 79-113.
Darvishzadeh, A. (1991). Geology of Iran, Amir Kabir publication, first edition, Tehran.
Esmaili, R.; Motevali, S. and Hoseinzadeh, M.M. (2012). Morphotectonic Effects on the Longitudinal Profile of the River of Waz; North Alborz, Mazandaran Province, Quantitative Geomorphological Research, 1(3): 101-114.
Ferraris, F.; Firpo, M. and Pazzaglia, F.G. (2012). DEM analyses and morphotectonic interpretation: The Plio-Quaternary evolution of the eastern–40. Ligurian Alps, Italy, Geomorphology, 149-150: 27-40.
Fillips, J.D. and Lutz, J.D. (2008). Profile convexities in bedrock and alluvial streams, Geomorphology, 102: 554-566.
Font, M.; Amorese, D. and Lagarde, J.L. (2010). DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: The Normandy intraplate area (NW France), Geomorphology, 119: 172-180.
Gao, M.; Zeilinger, G.; Xu, X.; Wang, Q. and Hao, M. (2013). DEM and GIS analysis of geomorphic indices for evaluating recent uplift of the northeastern margin of the Tibetan Plateau, China, Geomorphology, 190: 61-72.
Ghanavati, E.; Safakish, F. and Maghsoudi, Y. (2017). Evaluation of active tectonics in Jarahi - Zohreh Sub-basins based on the morpho-tectonic analysis and its impacts on the oil fields of the basin, Physical Geography Research Quarterly, 49(2): 221-240.
Giaconia, F.; Booth-Rea, G.; Martínez, J.M.M.; Azañón, J.M.; Pérez-Peña, J.V.; Pérez-Romero, J. and Villegas, I. (2012). Geomorphic evidence of active tectonics in the Sierra Alhamilla (eastern Betics, SE Spain), Geomorphology, 145-146: 90-106.
Gohari, M.; Taj Bakhsh, M.; Sarbazi, M. and Naeimi Ghasabian, S.N. (2014). Investigation of tectonic activity effects on the river channel geometry and hydraulic(A Case Study: KhartutRiver), Geography and Enviromental Hazards, 3(1): 37-49.
Goorabi, A. and Kiaroostami, F. (2015). Assessment of watershed Tectonics Using Geomorphologic Characteristics in the TecDEM Model, Roodak Basin in North East Tehran, Physical Geography Research Quarterly, 47(3): 465-479.
Hoseinzadeh, M.M. and Esmaili, R. (2015). Fluvial geomorphology, concepts, landforms and process, Shahid Beheshti University, First edition, Tehran.
Jamal Abadi, J.; Zangeneh Asadi, M.A.; Fatehi, Z. and Robat Sarpoushi, M. (2018). Evaluation of Tectonic features little effect on drainage networks (Case Study: Basins Bar, Baqi and ghaleh meidan at southern slopes of mountains Binalu, Quantitative Geomorphological Research, 4(4): 87-103.
Kale, V.S.; Sengupta, S.; Achyuthan, H. and Jaiswal, M.K. (2013). Tectonic controls upon Kaveri River drainage, cratonic Peninsular India: Inferences from longitudinal profiles, morphotectonic indices, hanging valleys and fluvial records, Geomorphology, 227: 153-165.
Karimi, B.; Sharafi, S.; maghsodi, M.; Karimi, S. and Soltani, S. (2012). The effect of morphotectonic factors on erosion and change of longitudinal profile of river using the mathematical functions (Case - Study: Alvand River in the West Kermanshah Province), Environmental Erosion Research, 2(2): 73-95.
Karimi, H.; Ghnavati, E.; Yamani, M. and Safari, A. (2018). The Effects of morphotectonic on the changes of rivers profile (Case study: Alamarvdasht River, South of Fars Province, Iran), Quantitative Geomorphological Research, 5(2): 37-52.
Larue, J.P. (2008). Effects of tectonics and lithology on long profiles of 16 rivers of the southern Central Massif border between the Aude and the Orb (France), Geomorphology, 93: 343-367.
Maghsoodi, M.; Navidfar, A.; Ghnbari, M. and Rezaei, A. (2015). Quantitative Analysis of the Effect of Lithology and Tectonic on the Longitudinal Profile of the River Case Study: Ojan Chi River, Quantitative Geomorphological Research, 4(1): 104-117.
Maghsoodi, M.; Zamanzadeh, S.M.; Yamani, M. and Hajizadeh, A. (2018). Assessment of tectonic of Maroon River catchment using geomorphic indices and improved the indices relations, Quantitative Geomorphological Research, 6(3): 37-59.
Mehrpoyan, M.; Jami, M.; Sarhaddi, N. and Pourkermani, M. (2017). The Impact of Tectonic Activity on the Morphology of Longitudinal Profiles of the River Case Study: Polrood River (North of Iran), Geography and Development Iranian Journal, 15(48): 213-230.
Pedrera, A.; Pérez-Peña, J.V.; Galindo-Zaldívar, J.; Azañón, J.M. and Azor, A. (2009). Testing the sensitivity of geomorphic indices in areas of low-rate active folding (eastern Betic Cordillera, Spain), Geomorphology, 105: 218-231.
Pérez-Peña, J.V.; Azañón, J.M.; Azor, A.; Delgado, J. and González-Lodeiro, F. (2010). Spatial analysis of stream power using GIS: SLk anomaly maps, Earth Surf. Process. Landforms, 34: 16-25.
Rostaee, Sh. and Nayeri, H. (2011). Quantitative Analysis of the Effect of Lithology and Tectonic on the Longitudinal Profile of the River in the Mahabad River Basin, Geography and Development Iranian Journal, 9(24): 137-153.
Saberi, A.; Yasaghi, A.; Jomor, Y. and Madani Pour, S. (2016). Estimation of Rising Rate Changes Using Precise Adjustment in Central Alborz, Northern Iran, Earth science Research, 7(1): 62-74.
Seif, A. and Khosravi, G. (2011). Investigation of Active Tectonics in Zagros Trusth Belt Farsan Region, Physical Geography Research, 42(4): 125-145.
Sheykhoeslami, M.; Javadi, H.R.; Asadi Sarshar, M.; Agha Hoseini, A.; Kouh Peyma, M. and Vahdati Daneshmand, B. (2014). Iran Faults Encyclopedia, Research Institute for Earth Sciences, Rahi publication, first edition, Tehran.
Troiani, F. and Della Seta, M. (2008). The use of the Stream Length–Gradient index in morphotectonic analysis of small catchments: A case study from Central Italy, Geomorphology, 102: 159-168.
Vojtko, R.; Petro, L.; Benová, A.; Bóna, J. and Hók, J. (2012). Neotectonic evolution of the northern Laborec drainage basin (northeastern part of Slovakia), Geomorphology, 138: 276-294.
Zibret, G. and Zibret, P. (2017). River gradient anomalies reveal recent tectonic movements when assuming an exponential gradient decrease along a river course, Geomorphology, 281: 43-52.