مدل‏ سازی و تحلیل فضایی عمق برف در پهنه شمالی ایران

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 استاد دانشگاه تبریز

2 دانشجوی دکتری اقلیم‏ شناسی در برنامه ‏ریزی محیطی، دانشگاه تبریز

3 عضو هیئت ‏علمی دانشگاه تبریز

4 عضو هیئت‏ علمی، گروه پژوهشی تغییر اقلیم، سازمان هواشناسی کشور، پژوهشکدة اقلیم ‏شناسی

چکیده

تغییرات عمق برف، به‏‏سبب تأثیرگذاری در شار انرژی سطحی و شرایط هیدرولوژیکی، در تحولات آب و هوای محلی و جهانی نقش درخور ‏توجهی دارد. هدف از این مطالعه مدل‏سازی و تحلیل فضایی عمق برف با استفاده از پایگاه ECMWF نسخة ERA Interim برای دورة زمانی 1980-2016 با تفکیک مکانی 125/0×125/0 درجة قوسی است. در این راستا داده‏های ارتفاع، طول و عرض جغرافیایی، و شاخص پوشش گیاهی NDVI سنجندة MODIS با استفاده از روش‏های GWR و OLS ارزیابی شد. ارزیابی خودهبستگی فضایی عمق برف با دو شاخص Moran’s I و Geary's C نشان داد عمق برف در پهنة شمالی ایران دارای الگوی خوشه‏ای ساخت‏یافته است. بیشینة متوسط عمق برف در ماه فوریه به‏دست آمده است. شمال غرب ایران همراهِ علم‏کوه در رشته‏کوه البرز بیشترین ‏عمق برف را نشان داده‏ است. نتایج نشان داد روش GWR برآوردهای دقیق‏تری در مقایسه با روش OLS ارائه می‏دهد. براساس خروجی‏های به‏د‏ست‏آمده از روش GWR، عمق برف با ارتفاع رابطة خطی را نشان نمی‏دهد، بلکه این رابطه بسته به تغییرات پوشش گیاهی، دمای هوا، و جهت شیب در منطقة مورد مطالعه متفاوت است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling and spatial analysis of snow depth in Northern Iran

نویسندگان [English]

  • behroz sari saraf 1
  • Habibeh Naghizadeh 2
  • Aliakbar rasouly 3
  • Saeid Jahanbakhsh 1
  • Iman Babaeian 4
1 Professor
2 Ph.D student
3 Professor
4 faculty member, Research Group on Climate
چکیده [English]

Introduction
Snow is an important component of the climate system over the mid- and high-latitude regions of the Earth. Its high shortwave albedo and low heat conductivity modulate heat and radiation fluxes at the Earth’s surface and thus directly modulates regional temperature evolution and ultimately atmospheric circulation patterns. Moreover, because snow acts as a temporary water reservoir, snow variability impacts soil moisture, evaporation and ultimately precipitation processes). As a result, snow cover has an essential influence on ecological) and economical systems. Vice versa, snow cover itself is determined by climate variations. Recent Arctic warming has severely impacted spring snow cover. This study aimed to evaluate the snow depth it the north of Iran. The results of this study can be used in the field of water resources, flooding and climate change will be useful.
Materials and methods
The present study aimed at evaluating Modeling and spatial analysis of snow depth of the European Centre for Medium-Range Weather Forecasts (ECMWF) of the ERA-Interim version with a 0.125 × 0.125 arc-spatial resolution in a survey has been designed and implemented. In this regard, the temporal and temporal changes of the snow depth of the North Country were also evaluated. This study, the monthly data of the 6-level 3 product (MYD08_M3_6), Normalized Difference Vegetation Index (NDVI) of the ،Terra Satellite were used.
Modeling of spatial relationships between snow depth and Geographic Parameters and NDVI index was obtained by using OLS and GWR models. The coefficients of regression equations obtained for the relationships were used in the area studied after calculation. Several criteria have been proposed for selecting the appropriate bandwidth. In this study, the Akaike information criterion (AIC), was used to select the core bandwidth.
Results and discussion
studied after calculation. Several criteria have been proposed for selecting the appropriate bandwidth. In this study, the Akaike information criterion (AIC), was used to select the core bandwidth.
Results and discussion
The average depth of snow in the northern zone of Iran ranges from 0.006 to 1. 748 cm for winter, April and autumn, respectively. The northern area of Iran in this season is 1.34 cm. In winter, the maximum average snow depth in the northern zone of Iran in February is 1.748 cm. The maximum amount of standard deviation occurred in the same season. In general, in winter and year, the maximum snow depth in the northern zone of Iran is more than in the other months of the year. The third quartile can be considered as the maximum snowfall and the first quartile is the northern border of the northern northwest of Iran, which can then be classified as the northern part of Iran's snowfall. In winter one-fourth of the year, the northern zone of Iran has a snow depth of more than 1.98 cm. The significant difference between Moran's I and Geary's c expected and Moran's I and Geary's c measured has shown that the spatial autocorrelation values calculated for each month really fluctuate and the value cannot be due to the magnitude of the data and changes caused by around the mean.
Conclusion
The results showed that the winter season with mantle cubes is 1.34 cm maximum snow depth during the seasons. Winter also has the highest snow depth variability. The highest snow depth was obtained with an average of 1.74 cm in February. Based on the results of the study, using quartz statistics, in winter one-quarter of the northern zone of Iran has a snow depth of more than 1.98 cm, which is the maximum value among seasons. The spatial dependence of the depth of snow on universal Moran methods has been rejected by the hypothesis that there is no relation between the depth of snow in the northern zone of Iran, and the Geary's c method has also shown that snowfall areas with high snow depth are relatively relative in terms of geographic patterns and a behavior They show clusters of their own. Correlations obtained with snow depth with longitude and vegetation index of NDVI have a significant reverse relationship and its relationship with latitude and elevation is a significant direct relationship. Modeling with GWR and OLS has also shown that the GWR method has a higher ability to justify the spatial association of snow depth with geographic parameters. The results of the GWR model show that the relationship between snow depth and geographic parameters, especially elevation, does not follow a linear model. Altitude in the mountain range of Alborz and northwestern Iran is mountainous areas that have shown significant snow depth.
Keywords
Snow Depth, Space Modeling, GWR Method, ERA Interim, Northern Zone of Iran.
Conclusion
The results showed that the winter season with mantle cubes is 1.34 cm maximum snow depth during the seasons. Winter also has the highest snow depth variability. The highest snow depth was obtained with an average of 1.74 cm in February. Based on the results of the study, using quartz statistics, in winter one-quarter of the northern zone of Iran has a snow depth of more than 1.98 cm, which is the maximum value among seasons. The spatial dependence of the depth of snow on universal Moran methods has been rejected by the hypothesis that there is no relation between the depth of snow in the northern zone of Iran, and the Geary's c method has also shown that snowfall areas with high snow depth are relatively relative in terms of geographic patterns and a behavior They show clusters of their own. Correlations obtained with snow depth with longitude and vegetation index of NDVI have a significant reverse relationship and its relationship with latitude and elevation is a significant direct relationship. Modeling with GWR and OLS has also shown that the GWR method has a higher ability to justify the spatial association of snow depth with geographic parameters. The results of the GWR model show that the relationship between snow depth and geographic parameters, especially elevation, does not follow a linear model. Altitude in the mountain range of Alborz and northwestern Iran is mountainous areas that have shown significant snow depth.
Keywords
Snow Depth, Space Modeling, GWR Method, ERA Interim, Northern Zone of Iran.

کلیدواژه‌ها [English]

  • Snow depth
  • Space Modeling
  • GWR Method
  • ERA Interim
  • Northern Zone of Iran
احمدی، م.؛ داداشی رودباری، ع. و ابراهیمی، ر. (1396). مدل‏سازی روابط فضایی اثر توپوگرافی بر دورنمای نیاز گرمایشی ایران با استفاده از مدل میان‏مقیاس منطقه‏ای RegCM4، برنامه‏ریزی و آمایش فضا، 21(3): 27-53.

احمدی، م. و داداشی رودباری، ع. (1395). آثار ترکیبات بیوفیزیکی در شکل‏گیری جزایر حرارتی شهری (مطالعة موردی شهر مشهد)، سنجش ‏از دور وGIS  ایران، 8(3): 39-58.

تقی‏زاده مهرجردی، ر.؛ قرائی‏منش، س. و فتح‏زاده، ع. (1394). پیش‏بینی توزیع مکانی عمق برف با استفاده از روش رگرسیون کریجینگ و عوارض زمین در منطقة سخوید یزد، مجلة علوم و مهندسی آبخیزداری ایران، 9(28): ۴۱-۴۸.

خوشخو، ی. (1395). شبیه‏سازی عمق برف با استفاده از مدل برف تک‏لایه (SLSM) در ایستگاه سقز، تحقیقات آب و خاک ایران، 47(3):  517-527.

کیخسروی کیانی، م.ص. و مسعودیان، ا. (1395 الف). واکاوی پیوند روزهای برف‏پوشان با ارتفاع، شیب، و وجه شیب در ایران‏زمین، پژوهش‏های جغرافیای طبیعی، 48(1): 1-14.

کیخسروی کیانی، م.ص. و مسعودیان، ا. (1395 ب). واکاوی روند تغییرات روزهای برف‏پوشان در ایران بر پایة داده‏های دورسنجی، جغرافیا و برنامه‏ریزی محیطی، 28(1): 49-60.

کیخسروی کیانی، م.ص. و مسعودیان، ا. (1396 الف). شناسایی برف‏خوان‏های ایران، پژوهش‏های جغرافیای طبیعی، 49(3): 395-408.

کیخسروی کیانی، م.ص. و مسعودیان، ا. (1396 ب). فصل‏بندی روزهای برف‏پوشان ایران‏زمین به کمک داده‏های دورسنجی، جغرافیا و برنامه‏ریزی محیطی، 27(3): 33-48.

کیخسروی کیانی، م.ص. و مسعودیان، ا. (1396 ج). واکاوی نقش دمای رویة زمین در پراکنش پوشش برف در ایران به کمک داده‏های ماهواره‏ای، جغرافیا و توسعه، 49: 189-204.

میرموسوی، ح. و صبور، ل. (1393). پایش تغییرات پوشش برف با استفاده از تصاویر سنجندة مودیس در منطقة شمال غرب ایران، جغرافیا و توسعه، 35: 181-200.

Agrawala, S. (2007). Climate change in the European Alps: adapting winter tourism and natural hazards management, Organisation for Economic Cooperation and Development (OECD).

Ahmadi, M. and Dadashiroudbari, A. (2016). The biophysical effect of compound the formation of urban heat islands (Case Study: Mashhad), Iranian Remote Sensing & GIS, 8(3): 39-58 (in Persian).

Ahmadi, M.; Dadashiroudbari, A. and Ebrahimi, R. (2017). Modeling Spatial Relationship of Topography Effect on Iran Heating Needs Perspective Using Regional Scale Model RegCM4, MJSP, 21(3): 27-53 (in Persian).

Ahmadi, M.; Kashki, A. and Roudbari, A.D. (2018). Spatial modeling of seasonal precipitation–elevation in Iran based on aphrodite database, Modeling Earth Systems and Environment, 4(2): 619-633.

Armstrong, R.L. and Brun, E. (Eds.). (2008). Snow and climate: physical processes, surface energy exchange and modeling, Cambridge University Press.

Brown, R.; Derksen, C. and Wang, L. (2010). A multi‐data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008, Journal of Geophysical Research: Atmospheres, 115(D16).

Brun, E.; Vionnet, V.; Boone, A.; Decharme, B.; Peings, Y.; Valette, R.; ... and Morin, S. (2013). Simulation of northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses, Journal of Hydrometeorology, 14(1): 203-219.

Charlton, M.; Fotheringham, S. and Brunsdon, C. (2009). Geographically weighted regression. White paper. National Centre for Geocomputation. National University of Ireland Maynooth.

Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D. ... and  Jones, J. (2014). Recent Arctic amplification and extreme mid-latitude weather, Nature geoscience, 7(9): 627.

Daley, R. (1991). Atmospheric data analysis, Cambridge atmospheric and space science series, Cambridge University Press, 6966(25): 809-822.

Drusch, M.; Vasiljevic, D. and Viterbo, P. (2004). ECMWF's global snow analysis: Assessment and revision based on satellite observations, Journal of Applied Meteorology, 43(9): 1282-1294.

Fallah Ghalhari, G.F. and Roudbari, A.D. (2018). An investigation on thermal patterns in Iran based on spatial autocorrelation, Theoretical and Applied Climatology, 131(3-4): 865-876.

Fallah Ghalhari, G.F.; Roudbari, A.D. and Asadi, M. (2016). Identifying the spatial and temporal distribution characteristics of precipitation in Iran, Arabian Journal of Geosciences, 9(12): 595.

Foster, D.J. and Davy, R.D. (1988). Global Snow Depth Climatology. US Air Force Environmental Technical Application Center, TN-88/006.

Fotheringham, A.S.; Charlton, M.E. and Brunsdon, C. (2001). Spatial variations in school performance: a local analysis using geographically weighted regression, Geographical and Environmental Modelling, 5(1): 43-66.

Jonas, T.; Rixen, C.; Sturm, M. and Stoeckli, V. (2008). How alpine plant growth is linked to snow cover and climate variability, Journal of Geophysical Research: Biogeosciences, 113(G3).

Keikhosravi Kinay, M. and Masoudian, S. (2017 c). Exploring the Role of Land Surface Temperature on Distribution of Snow Coverage in Iran by Remote Sensing Data, Geography and Development Iranian Journal, 15(49): 189-204 (in Persian).

Keikhosravi Kiany, M. and Masoodian, A. (2017 b). Trend Analysis of Snow–covered Days in Iran based on Remote Sensing Data, Geography and Environmental Planning, 28(1): 49-60 (in Persian).

Keikhosrvai Kiany, M. and Masoudian, A. (2016 b). Identification of Seasonal Snow-covered Seasons of Iran based on MODIS Data, Geography and Environmental Planning, 27(3): 33-48 (in Persian).

Keikhosrvai Kiany, M. and Masoudian, S. (2016 a). Exploring the Relation of Snow-Covered Days with Elevation, Slope and Aspect in Iran, Physical Geography Research Quarterly, 48(1): 1-14 (in Persian).

Keikhosrvai Kiany, M. and Masoudian, S. (2017 a). Identification of snow reservoirs in Iran, Physical Geography Research Quarterly, 49(3): 395-408 (in Persian).

Khan, V.; Holko, L.; Rubinstein, K. and Breiling, M. (2008). Snow cover characteristics over the main Russian river basins as represented by reanalyses and measured data, Journal of Applied Meteorology and Climatology, 47(6): 1819-1833.

King, J.; Pomeroy, J.; Gray, D.M.; Fierz, C.; Föhn, P.; Harding, R. ... and Plüss, C. (2008). Snow-atmosphere energy and mass balance.

Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G. and Worthy, L.D. (2006). Land-cover change detection using multi-temporal MODIS NDVI data, Remote sensing of environment, 105(2): 142-154.

Mirmousavi, S. and Saboor, L. (2014). Monitoring the Changes of Snow Cover by Using MODIS Sensing Images at North West of Iran, Geography and Development Iranian Journal, 12(35): 181-200 (in Persian).Moran, P. A. P. (1950).”Notes in Continuous Stochastic Phenomena”. Biometrika. 37(1): 17-23. doi:10.2307/2332142. JSTOR 2332142

Nayak, A.; Marks, D.; Chandler, D.G. and Seyfried, M. (2010). Long‐term snow, climate, and streamflow trends at the Reynolds Creek experimental watershed, Owyhee Mountains, Idaho, United States, Water Resources Research, 46(6).

Peings, Y.; Douville, H.; Alkama, R. and Decharme, B. (2011). Snow contribution to springtime atmospheric predictability over the second half of the twentieth century, Climate dynamics, 37(5-6): 985-1004.

Simmons, A.J., Willett, K.M., Jones, P.D., Thorne, P.W. and Dee, D.P. (2010). ''Low-frequency variations in surface
atmospheric humidity, temperature and precipitation: Inferences from reanalysis and monthly gridded
observational datasets''. J. Geophys. Res.. 115. 1–21. doi: 10.1029/2009JD012442.

Walters, D.N.; Best, M.J.; Bushell, A.C.; Copsey, D.; Edwards, J.M.; Falloon, P.D.; ... and Roberts, M.J. (2011). The Met Office Unified Model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations, Geoscientific Model Development, 4(4): 919-941.

Wegmann, M.; Orsolini, Y.; Dutra, E.; Bulygina, O.; Sterin, A. and Brönnimann, S. (2017). Eurasian snow depth in long-term climate reanalyses.

Zhong, X.; Zhang, T.; Kang, S.; Wang, K.; Zheng, L.; Hu, Y. and Wang, H. (2018). Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012, The Cryosphere, 12(1): 227-245.

Zuo, Z.; Yang, S.; Zhang, R.; Xiao, D.; Guo, D. and Ma, L. (2015). Response of summer rainfall over China to spring snow anomalies over Siberia in the NCEP CFSv2 reforecast, Quarterly Journal of the Royal Meteorological Society, 141(688): 939-944.

Fischer, M. M., & Getis, A. (Eds.). (2009). Handbook of applied spatial analysis: software tools, methods and applications. Springer Science & Business Media.

Tokunaga, M., & Thug, V. T. (2002). Finding the relationship between vegetation index and coherence signature to utilize the product of radar interferometry in land cover application. Asian Association on Remote Sensing.

Chu, H. J. (2012). Assessing the relationships between elevation and extreme precipitation with various durations in southern Taiwan using spatial regression models. Hydrological Processes, 26(21), 3174-3181.