تحلیل همدیدی و شناسایی شار رطوبت روزهای همراه با تگرگ در غرب ایران (مطالعه موردی: حوضه آبریز زاب، آذربایجان غربی)

نوع مقاله : مقاله کامل

نویسندگان

1 عضو هیئت ‏علمی پژوهشگاه علوم انتظامی و مطالعات اجتماعی

2 استاد اقلیم ‏شناسی دانشگاه خوارزمی، تهران

3 دانشجوی دکتری اقلیم‏ شناسی شهری دانشگاه خوارزمی، تهران

4 دانش‏ آموخته دکتری اقلیم ‏شناسی

چکیده

هدف از این پژوهش طبقه‏بندیِ مناسبِ الگوهای جوی مرتبط با وقایع تگرگ و ویژگی‏های اقلیم‏شناختی مسبب آن‏ها در حوضة زاب است. بنابراین، از داده‏های ایستگاهی (کدهای ۲۷-۸۷-۹۶ الی ۹۹ از ۱۰۰ کد مربوط به هوای حاضر) بارش تگرگ سه ایستگاه همدید حوضة زاب طی دورة ۲۴ساله (۲۰۱۶-۱۹۹۲) استفاده شد. همچنین، با استفاده از داده‏های پایگاه NCEP/NCAR، به واکاوی الگوهای گردشی مقارن با این رخدادها اقدام شد. با تحلیل خوشه‏ایِ داده‏های فشار تراز دریا و ارتفاع ژئوپتانسیل (۵۰۰ هکتوپاسکال)، سه الگوی گردشی مرتبط با بارش تگرگ شناسایی شد؛ از جمله ۱. تقویت سامانة کم‏فشار سودان؛ ۲. تقویت پُرفشارهای اروپایی و سیبری؛ ۳. قرارگیری منطقه بر روی شرق ناوة مدیترانه. سپس، با اجرای همبستگی درون‏گروهی بین هر خوشه روزی که بیشترین همبستگی را با سایر روزها داشت روز نمایندة الگوی گردشی آن خوشه انتخاب شد و مبنای واکاوی پژوهش واقع گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Synoptic Analysis and Identification of Hail Flow Days in Western Iran (Case Study: Zab Basin, West Azerbaijan)

نویسندگان [English]

  • Mohammad Reza Salimi Sobhan 1
  • Zahra Hejazizadeh 2
  • Fariba Sayadi 3
  • Fatemeh Qadri 4
1 Assistant Professor of Law, the Institute of Law Enforcement and Social Studies
2 Professor of Climatology, Kharazmi University, Tehran, Iran
3 PhD Student, Urban Climatology, University of Kharazmi, Tehran
4 PhD in Climatology, University of Tehran, Iran
چکیده [English]

Introduction
Hail is considered as one of the most important atmospheric hazards as a consequence of a thunderstorm having harmful effects on the environment every year. Hailstorms usually occur from the clouds of cumulonimbus and are often thunderstorms and generally accompanied by thunderstorms, especially in spring. In general, hail is the product of intense convection found in a thunderstorm. To analyze and predict the mechanisms of each climatic phenomenon, one needs to have a detailed understanding of the main components of its climatic systems.
Since hail in the Zab basin annually causes significant damages, especially in agriculture and livestock, the aim of this study is to investigate the synoptic patterns of hail in the Zab basin in order to reduce the damaging effects. The climatic phenomenon is on different parts.   The Zab Minor catchment in northwestern and northwest part of Kurdistan Province, southwestern Iran,  consists of Piranshahr, Sardasht and Baneh counties.
Material and methods
In this study, an environmental circulation approach was used to identify the circulation patterns of the days associated with hail in the west of the country. In this study, the code of days associated with the hail of Sardasht, Piranshahr and Baneh synoptic stations (with the longest statistical period between provincial stations) was obtained from the establishment (1992) up to year 2016 from the Meteorological Organization of Iran and then according to the code. The intensity of days associated with the hail event was identified during the study period. To identify large-scale synoptic patterns of day-event hail phenomena, hectopascal altitude and sea-level pressure data from open NCEP / NCAR analysis data on daytime events ranging from 0 ° C to 120 ° C and 0 ° C to 90 ° N They were prepared. Also, to determine the moisture flux of hail event days, Schulz and Benacus moisture flux equation was used.
Results and discussion
The purpose of this study is to establish an appropriate classification of atmospheric patterns in relation to hail events and the climatic characteristics that cause them in the Zab Basin. Using the NCEP / NCAR Center data, it is possible to analyze synoptically and identify the circulation patterns that coincide with these events. Cluster analysis of sea level pressure and geopotential height data revealed three weak, moderate and severe circulation patterns associated with hail precipitation. Finally, in order to identify the most important systems, intra-group correlation was performed between each cluster, and the day that had the highest correlation with other days in one cluster was selected as the representative day of the circulation pattern of the cluster and the basis of this study was analyzed.
Conclusion
In the study of the synoptic patterns of hail precipitation according to the obtained results, the model best justified the hail precipitation is presented for the Zab basin. In the first model, with low hail precipitation, we observed a contrast between warm and humid low-pressure Sudan systems and high-pressure European cold tabs on the study area.
In the second pattern at sea level with the formation of a low pressure center on Iraq, this low pressure is reinforced by the development of warm and humid air through the Sudanese system and the formation of a high-pressure belt across the northern Iranian strip, which, with its rotation and rotation, drives cold air. The study area has provided conditions for frontalisation in the area.
In the third model, Sudan's low sea level is strengthened so that its tongues stretch to the northwest and northwest Iran, which inject hot and humid air and create convergence conditions over the study area. The Siberian high pressure on the north of Iran is also at its peak, and its tabs and motions cause very cold air to fall over the study area, and in this case the very cold northern and warm southern humid conditions make for the front. The region created instability due to the specual circumstances.
Previous research on hail precipitation or only the role of Sudanese high or low pressure northern Sudan in hail precipitation events has shown that hail precipitation in western Iran necessitates confrontation of air masses. The cold north is warm and humid south and the strongest hailstorms occurred when these air masses penetrated the study area at peak times and created conditions for overburden and instability with the help of high-level currents. They cause severe vertical motions in the atmosphere and, as a result, hail over the region.

کلیدواژه‌ها [English]

  • Synoptic analysis
  • Northern Highlands
  • Mediterranean Nave
  • Hail precipitation
  • Zab Basin
امیدوار، ک؛ صفرپور، ف. و زنگنه اینالو، الف. (1392). بررسی و تحلیل همدید سه رخداد تگرگ شدید در استان فارس، نشریة جغرافیا و توسعه، ۳۰: ۱۷۸-۱۵۷.
بارش‏های حدی در ارتباط با عوامل مؤثر بر بارش در غرب و شمال غرب، نشریة جغرافیا و مخاطرات محیطی، ۱۹: ۱۵۳-۱۳۳.
بداق جمالی، ج.؛ جوانمرد، س. و فاتح، ش. (1389). بررسی پدیدة تگرگ در ایران و روش‏های مقابله با آن، چهاردهمین کنفرانس ژئوفیزیک ایران، تهران، ۲۳-۲۱ اردیبهشت، مؤسسة ژئوفیزیک، مقالات شفاهی، فیزیک فضا، ص ۴۷-۴۴.
خوشحال دستجردی، ج. و قویدل رحیمی، ی. (1392). شناسایی ویژگی‏های سوانح محیطی منطقة شمال غرب ایران (نمونة مطالعاتی توفان‏های تندری در تبریز)، فصل‏نامة مدرس علوم انسانی، ویژه‏نامة جغرافیا، ص ۱۱۵-۱۰۱.
درگاهیان، ف.؛ علیجانی، ب.؛ رضایی، غ.ح. و پرنو، ر. (۱۳۹۳). تحلیل آماری، ترمودینامیکی، و همدیدی پدیدة تگرگ در استان لرستان، فصل‏نامة برنامهریزی منطقهای،  :18۱۱۷-۱۳۰.
رضایی بنفشه، م.؛ نجفی، م.س.؛ نقی‏زاده، ح. و آب خرابات، ش. (۱۳۹۴). واکاوی رفتار علیجانی، ب. (1388). اقلیمشناسی سینوپتیک، چ ۳، تهران: سمت.
عسگری، احمد و فرشته محبی (۱۳۸۹)، مطالعه آماری- همدیدی توفان های تندری در استان خوزستان، چهارمین کنفرانس منطقه ای تغییر اقلیم، تهران، سازمان هواشناسی کشور.
علیجانی، ب. و کاویانی، م. (1385). مبانی اقلیمشناسی، چ ۲، تهران: سمت.
کیانی،  حدیث ، سید حسین میرموسوی و مسعود جلالی (۱۳۹۲)، "تحلیل زمانی – مکانی وقوع بارش تگرگ در استان کرمانشاه" فصلنامه ی علمی – پزوهشی فضای جغرافیایی، شماره ۴۳، صص ۹۸-۸۳.
لشکری، ح. و امینی، م. (1389). تحلیل همدید و پهنه‏بندی بارش تگرگ در استان خراسان، نشریة جغرافیاوبرنامهریزی، ۱۵: ۱۰۸-۵۱.
مفیدی، ع. و زرین، آ. (1384). بررسی همدیدی تأثیر سامانه‏های کم‏فشار سودانی در وقوع بارش‏های سیل در ایران، فصل‏نامة تحقیقات جغرافیایی، ۳۶ : ۱۱۳-۷۷.
میرزاخانی، آ. (1378). تجزیه و تحلیل ریسک سیل و آثار زیان‏بار آن در ایران، فصل‏نامة بیمه، ۷: ۸-۱۵.
یارنال، ب. (1385). اقلیمشناسی همدید و کاربرد آن در مطالعات محیطی، ترجمة سید ابوالفضل مسعودیان، انتشارات دانشگاه اصفهان.
Aarn, A, J.C PENA, M. Tora, (2011), Atmospheric circulation patterns   associated with hail events in Lleida (Catalonia), Atmospheric Research 100 428–438.
Asgari, A; Mohebbi, F (2011), Statistical-Synoptic Study of Thunderstorms in Khuzestan Province, Fourth Regional Climate Change Conference, Tehran, Iran Meteorological Organization
Alijani, B. (2009). Synoptic Climate, Third Edition, saamt Publishing, Tehran.
Alijani, B. and Kaviani, M. (2006). Climatology Basics, Second Edition, saamt. Publishing, Tehran.
Banacos, P.; David, C. and Schultz, M. (2004). The Use of Moisture Flux Convergence in Forecasting Convective Initiation: Historical and Operational Perspectives, Weather and Forecasting, Vol 20 June 2005.
Berthet, C.; Wesolek, E.; Dessens, J. and Sanchez, J.L. (2012). Extreme hail day climatology in South western France, Atmospheric Research, 123(1): 139-150.
Bodagh Jamali, J.; Javanmard, S. and Fateh, Sh. (2010). Investigating the phenomenon of hail in Iran and its methods of coping with it, 14th Iranian Geophysical Conference, Tehran, May 23-21, Geophysics Institute, Oral History, Space Physics, pp. 47-44.
Changnon Stanley, A. (2009). Increasing major losses in the U.S., Climatic Change, No. 1 4.
Dessens, J. (1986). Hail in Southwestern France, hail fall characteristics and hailstorm environment, J. Climate Appl, Meteorol, 25: 35-47.
Eccel, E.; Cau, P.; Riemann-Campe, K. and Biasioli, F. (2011). Quantitative hail monitoring in an alpine area: 35-year climatology and links with atmospheric variables, International journal of climatology, 32(4): 503-517.
Good Dastjerdi, J. and Ghavidel Rahimi, Y. (2014). Identifying the Environmental Disaster Characteristics of the Northwest Region of Iran (A Case Study of Thunder Storm in Tabriz), Quarterly Journal of Humanities, Special Issue of Geography, pp. 101-115.
Han-Gyul, J.; Hyunho, L.; Jambajamts, L. and Jong-Jin, B. (2016). A Hail Climatology in South Korea, Atmospheric research, 38-54.
Kiani, H, Mirmosavi, S. H; Jalali, M (2014), "Temporal-Spatial Analysis of Hail Precipitation in Kermanshah Province" Scientific - Geographical Research Quarterly, Vol. 43, pp. 83-98.
Lashkari, H. and Amini, M. (2010). Analysis and observation of hail precipitation in Khorasan province, Journal of Geography and Planning, 15: 108-51. Mofidi, A. and Zarrin, A. (2005). A Survey on the Impact of Sudan Low Pressure Systems on Flood Precipitation Events in Iran, Geographical Research Quarterly, 36: 113-77.
Lucia, H.; Laura, L.; Merino, A.; Berthet, C.; García-Ortega, E.; Sánchez, J. and Dessens, L. (2015). Hailfall in southwest France: Relationship with precipitation, trends and wavelet analysis, Atmospheric Research, 156: 174-188.
Martinez, C, Campins, j, jensa, a. (2008)" heavy hailstorm events in the western Mediterranean: An Atmosphoeric patterns classification", adv.sci.res. 2, pp.61-64
Mirzakhani, A. (1999). Flood risk analysis and its harmful effects in Iran, Quarterly Journal of Insurance, 7: 8-15.
Yannal, B. (2006). Synthesis of Climatology and its Application in Environmental Studies, Translated by Seyyed Abolfazl Masoodian, Isfahan University Press.
Omidvar, K.; Safarpour, F. and Zangeneh Inaloo, A. (2014). Surveying and Analyzing the Three Hailing Events in Fars Province, Geography and Development Magazine, 30: 178-157.
Poc akal, D. and Stalec, J. (2007). Statistical analysis of hail characteristics in the hail-protected western part of Croatia using data from hail suppression station, 4th European Conference on Severe Storms 10 - 14 - Trieste, pp. 1-12.
Punge, H.J.; Bedka, K.M. and Kunz,M; werner, A. (2014). A new physically based stochastic event catalog for hail in Europe, Natural Hazards, DOI 10.1007/s11069-014-1161-0.
Shen, S. (2003). Global warming science and policy: progress 2002-2003. Proceeding of 14th Global warming International conference and expo (24-30 may, Boston. USA), pp. 7-18.