ارزیابی قابلیت باندهای رادار پولاریمتریک برای استخراج خصوصیات بیوفیزیکی سطح زمین

نوع مقاله : مقاله کامل

نویسندگان

1 دانشجوی دکتری سنجش از دور و GIS، دانشکدة جغرافیا، دانشگاه تهران

2 استادیار گروه سنجش از دور و GIS، دانشکدة جغرافیا، دانشگاه تهران

3 کارشناس‏ارشد سنجش از دور و GIS، دانشکدة جغرافیا، دانشگاه تهران

چکیده

برخلاف سنجنده‏های اپتیکی که تحت تأثیر عوامل محیطی مانند دود، مه، ابر، و میزان نور خورشید قرار می‏گیرند، سنجنده‏های راداری با روزنة مجازی در همة ساعات شبانه‏روز و همه نوع شرایط آب و هوایی توانایی اخذِ داده را دارند. بنابراین، هدف از این تحقیق ارزیابی قابلیت باند‏های راداری برای استخراج خصوصیات بیوفزیکی سطح زمین است. در این مطالعه از داده‏های ماهواره‏ای لندست-8 و باندهای پلاریمتریک VV و VH سنتینل-1 استفاده شده است. ارتباط 18 شاخص طیفی استخراج‏شده از تصاویر اپتیکی با باندهای راداری در مناطق مختلف بررسی شده است. نتایج به‏دست‏آمده نشان داد که از باندهای راداری با توجه به ماهیت منطقة موردمطالعه خصوصیات متفاوتی می‏توان استخراج کرد؛ به‏طوری‏که در منطقة موردمطالعة اول با کاربری زمین بایر شاخص LST، در منطقة موردمطالعة دوم با کاربری زمین کشاورزی شاخص EVI، و در منطقة موردمطالعة سوم با کاربری پوشش جنگلی متراکم شاخص MNDWI به‏ترتیب دارای همبستگی 668/0، 756/0، و 803/0 با باندهای راداری است. بنابراین، با توجه به نتایج به‏دست‏آمده در مواقعی که امکان استفاده از داده‏های اپتیکی وجود ندارد می‏توان از باندهای راداری به‏عنوان جای‏گزین مناسبی برای استخراج خصوصیات بیوفیزیکی سطح زمین استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Capability of Polarimetric Radar Bands to Extract Biophysical Properties of the Earth's Surface

نویسندگان [English]

  • Saman Nadizadeh Shorabeh 1
  • Sara Attarchi 2
  • Foad Minaei 3
1 PhD Student of Remote Sensing and GIS, Faculty of Geography, Tehran of University
2 Assistant Professor of Remote Sensing and GIS, Faculty of Geography, of Tehran University
3 Master of Science Remote Sensing and GIS, Faculty of Geography, Tehran of University
چکیده [English]

Introduction
Biophysical properties of vegetation, temperature and surface moisture are key parameters to control and evaluate the physical and chemical processes of the land surface. Biophysical properties can be used to monitor various applications such as urban heat island, climate change and drought. Access to timely information and awareness of the changes in land’s biophysical properties are required in integrated management and sustainable development. Erath surface biophysical properties can be successful in being retrieved using different types of remote sensing data. From 1970s, remote sensing data provides unique information in surveying dynamic phenomena.  Remote sensing imagery provides repetitive data of wide distant area.
Remote sensing sensors collect Earth surface data at different part of electromagnetic spectrum, i.e. optic, thermal and microwave. As a result, the same phenomenon may provide different responses depending on the radiation’s wavelength. These responses are complementary and the joint use of them offers more reliable information. That is the reason, multi-sensor approaches gain more attention. Multi-spectral optical sensors such as Landsat have been widely used in earth surface studies; however, their applications are limited mainly in the presence of smoke, fog and clouds. In contrary, radar sensors (e.g. Synthetic Aperture Radar, SAR) operate well even in cloudy sky. SAR sensors are sensitive to the moisture content and structure (shape, direction, roughness) of the surface. Therefore, the main purpose of this study is to evaluate the efficiency of radar bands for extracting surface biophysical properties.
Materials and methods
For the purpose of comprehensive study, three different areas with different types of land cover were considered as the study areas. The first study area, located in the east of Ardebil, encompasses bare land. The second study area is located in the southeast of Ardebil with agricultural land use. The third study area in Mazandaran province is around Noor city. Land cover is dense natural forest.
Landsat-8 and Sentinel-1 satellite images dated on 2019 were acquired. The Landsat-8 image has already been geo-referenced with UTM coordinates system, zone 39. The coordinate system for Sentinel images is WGS84 ellipsoid. We used the GRD product which has VV and VH polarizations.
In this study, pre-processing steps were done to prepare images including atmospheric correction (Landsat images) and geometric (Sentinel images). FLAASH algorithm has been used for atmospheric correction. Next, spectral indices were computed from Landsat visible and infrared bands to represent surface biophysical properties. Single-channel algorithm is used to calculate surface temperature. Multiple linear regression was applied to model surface biophysical properties by the help of Sentinel polarimetric bands. Finally, based on these models, surface biophysical properties maps were driven.
Results and discussion
In this study, 18 spectral indices were extracted from Landsat image. It should be noted that some of these indices are normalized and some are not normalized, so for all indices to be comparable the values of all indices were set to zero and one normal.
Case study 1
In the first study area, radar’s backscattering values showed more significant relationships with LST, NDBI and IPVI indices, while there were weak relationships among radar’s backscattering values with MNDWI, GDVI and SR indices. High coefficient of determination between radar responses and LST values could be justified by the effect of soil moisture on soil temperature and radar backscattering, as well.  That’s why, radar responses can predict LST values.
Case study 2
The investigation of the relationship among spectral indices and radar bands shows that radar bands have high potential to extract biophysical properties in this region. Among 18 spectral indices, EVI, MTVI1 and MTVI2 indices were highly correlated with the radar bands. The LST, SGI and SR indices showed the weakest correlations with radar bands. This indicates, LST, SGI and SR could not be predicted by backscattering values in agricultural land.
Case study 3
In the third study area, MNDWI showed a high correlation with radar responses. MNDWI index was first developed to study the amount of water available to represent vegetation health. Radar bands are also highly sensitive to moisture content. Therefore, it is not surprising that a high correlation between the radar bands and MNDWI index were reported for the third study area, as it is a high moisture forest area. The lowest correlation was observed between radar bands with NDBI spectral index with correlation coefficient of 0.418. The reason for this low value is the nature of the study area, because the study area covers with dense vegetation and the NDBI index has been developed to extract the built-up area.
Conclusion
Remote sensing technology provides valuable information in recognition of patterns and changes of the biophysical properties of the earth surface. Optical data have good spatial, spectral and radiometric resolution and have been used in a variety of applications. However, optical data is not available in all seasons because the presence of smoke, fog, clouds limits their availability. In contrast to optical data, SAR sensors have the ability to acquire data in all weather conditions. Therefore, the main objective of this study was to investigate the capability of radar data to extract biophysical properties of the land surface. The results showed that radar bands have a high capability to extract surface biophysical properties, so radar data can be considered as a good alternative especially when optical data is not available. Considering the proper relation of spectral indices with the targets’ responses in radar bands, the results of this study can further be used in different environmental applications such as heat island, evapotranspiration and coastline extraction.
Based on the findings of the current study, it is recommended that future researches investigate the efficiency of full polarization images in comparison with existing spectral indices to extract biophysical properties of the earth's surface. The full polarized radar images also allow the calculation of radar indices based on the degree of backscattering values in different polarimetric bands. In addition, given the low saturation level of spectral indices (in comparison with radar, responses) and the loss of sensitivity of these indices to phenomena changes, it is highly helpful to investigate the relationship of biophysical properties with radar bands in such a situation.

کلیدواژه‌ها [English]

  • Optical data
  • Radar data
  • Biophysical properties
  • Spectral indices
  • Regression analysis
رمضانی، م.‏ر. و صاحبی، م.‏ر. (1394). برآورد زیست‏تودة جنگل با استفاده از تصاویر ماهواره‏ای SAR و اپتیک، مهندسی فناوری اطلاعات مکانی، ۳(۱): 15-26.
ملکی، م.؛ توکلی ‏صبور، س.‏م.؛ ضیائیان فیروزآبادی، پ. و رئیسی، م. (1397). مقایسة داده‏های اپتیک و رادار در استخراج عوارض و پدیده‏های زمینی، سنجش از دور و سامانة اطلاعات جغرافیایی در منابع طبیعی، 9(2): 93-107.
Agapiou, A.; Hadjimitsis, D. and Alexakis, D. (2012). Evaluation of broadband and narrowband vegetation indices for the identification of archaeological crop marks, Remote sensing, 4(12): 3892-3919.
Ahmadian, N.; Ghasemi, S.; Wigneron, J.P. and Zölitz, R. (2016). Comprehensive study of the biophysical parameters of agricultural crops based on assessing Landsat 8 OLI and Landsat 7 ETM+ vegetation indices, GIScience & Remote Sensing53(3): 337-359.
Baghdadi, N. and Zribi, M. (2016). Land Surface Remote Sensing in Agriculture and Forest, Elsevier.
Bannari, A.; Asalhi, H. and Teillet, P.M. (2002). Transformed difference vegetation index (TDVI) for vegetation cover mapping. In IEEE International geoscience and remote sensing symposium,  5: 3053-3055.
Bertolet, B.L.; Corman, J.R.; Casson, N.J.; Sebestyen, S.D.; Kolka, R.K. and Stanley, E.H. (2018). Influence of soil temperature and moisture on the dissolved carbon, nitrogen, and phosphorus in organic matter entering lake ecosystems, Biogeochemistry139(3): 293-305.
Boegh, E.; Søgaard, H.; Broge, N.; Hasager, C.B.; Jensen, N.O.; Schelde, K. and Thomsen, A. (2002). Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture, Remote sensing of Environment81(2-3): 179-193.
Boori, M.S.; Balzter, H.; Choudhary, K.; Kovelskiy, V. and Vozenilek, V. (2015). A comparison of land surface temperature, derived from AMSR-2, Landsat and ASTER satellite data, J. Geogr., Geol7: 61-69.
Chen, X. (2016). A case study using remote sensing data to compare biophysical properties of a forest and an urban area in Northern Alabama, USA, Journal of Sustainable Forestry35(4): 261-279.
Crippen, R.E. (1990). Calculating the vegetation index faster, Remote sensing of Environment34(1): 71-73.
Darvishzadeh, R.; Skidmore, A.; Abdullah, H.; Cherenet, E.; Ali, A.; Wang, T.; ...  and Paganini, M. (2019). Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model, International Journal of Applied Earth Observation and Geoinformation79: 58-70.
Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F. and Cho, M. (2008). LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements, ISPRS journal of photogrammetry and remote sensing63(4): 409-426.
De Alban, J.; Connette, G.; Oswald, P. and Webb, E. (2018). Combined Landsat and L-band SAR data improves land cover classification and change detection in dynamic tropical landscapes, Remote Sensing, 10(2): 306.
Duckworth, J.H. (1998). Quantitative analysis. In Applied spectroscopy: A compact reference for practitioners, 93.
Du, H.; Cui, R.; Zhou, G.; Shi, Y.; Xu, X.; Fan, W. and Lü, Y. (2010). The responses of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI, Acta Ecologica Sinica30(5): 257-263.
Filipponi, F. (2019). Sentinel-1 GRD Preprocessing Workflow. In Multidisciplinary Digital Publishing Institute Proceedings, 18(1): 11.
García-Llamas, P.; Suárez-Seoane, S.; Taboada, A.; Fernández-García, V. ; Fernández-Guisuraga, J. M. ; Fernández-Manso, A. ; ... and Calvo, L. (2019). Assessment of the influence of biophysical properties related to fuel conditions on fire severity using remote sensing techniques: a case study on a large fire in NW Spain, International Journal of Wildland Fire28(7): 512-520.
Gonenc, A. ; Ozerdem, M.S. and Emrullah, A.C.A.R. (2019). Comparison of NDVI and RVI Vegetation Indices Using Satellite Images, In 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics) (pp. 1-4). IEEE.
Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J. and Strachan, I.B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture, Remote sensing of environment90(3): 337-352.
Han-Qiu, X.U. (2005). A study on information extraction of water body with the modified normalized difference water index (MNDWI), Journal of remote sensing5: 589-595.
Hu, J.; Ghamisi, P. and  Zhu, X. (2018). Feature extraction and selection of sentinel-1 dual-pol data for global-scale local climate zone classification, ISPRS International Journal of Geo-Information7(9): 379.
Huete, A.R. (1988). A soil-adjusted vegetation index (SAVI), Remote sensing of environment25(3): 295-309.
Jiang, Z.; Huete, A.R.; Didan, K. and Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band, Remote sensing of Environment112(10): 3833-3845.
Jackson, T.J.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C. ... and Hunt, E.R. (2004). Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans, Remote Sensing of Environment92(4): 475-482.
Jarchow, C.J.; Nagler, P.L. and  Glenn, E.P. (2017). Greenup and evapotranspiration following the Minute 319 pulse flow to Mexico: An analysis using Landsat 8 Normalized Difference Vegetation Index (NDVI) data, Ecological engineering106: 776-783.
Jordan, C.F. (1969). Derivation of leaf‐area index from quality of light on the forest floor, Ecology50(4): 663-666.
Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; ... ans Reiche, J. (2016). A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring, Remote Sensing8(1): 70.
Kaplan, G.; Avdan, U. and Avdan, Z.Y. (2018). Urban heat island analysis using the landsat 8 satellite data: A case study in Skopje, Macedonia. In Multidisciplinary Digital Publishing Institute Proceedings, 2(7): 358.
Kim, Y. and Van Zyl, J.J. (2009). A time-series approach to estimate soil moisture using polarimetric radar data, IEEE Transactions on Geoscience and Remote Sensing47(8): 2519-2527.
Kim, Y.H.; Oh, J.H. and Kim, Y.I. (2014). Comparative Analysis of the Multispectral Vegetation Indices and the Radar Vegetation Index, Agricultural and forest meteorology32(6): 607-615.
Kim, Y.; Jackson, T.; Bindlish, R.; Lee, H.  and Hong, S. (2011). Radar vegetation index for estimating the vegetation water content of rice and soybean, IEEE Geoscience and Remote Sensing Letters9(4): 564-568.
Kumar, S.D.; Rao, S.S. and Sharma, J.R. (2013). Radar Vegetation Index as an alternative to NDVI for monitoring of soyabean and cotton. In Proceedings of the XXXIII INCA International Congress (Indian Cartographer), Jodhpur, India (pp. 19-21).
Lee, J.S.; Ainsworth, T.L.; Wang, Y. and Chen, K.S. (2014). Polarimetric SAR speckle filtering and the extended sigma filter, IEEE Transactions on geoscience and remote sensing53(3): 1150-1160.
Lee, J.S.; Grunes, M.R. and De Grandi, G. (1999). Polarimetric SAR speckle filtering and its implication for classification, IEEE Transactions on Geoscience and remote sensing37(5): 2363-2373.
Li, P.; Jiang, L. and Feng, Z. (2014). Cross-comparison of vegetation indices derived from Landsat-7 enhanced thematic mapper plus (ETM+) and Landsat-8 operational land imager (OLI) sensors, Remote Sensing6(1): 310-329.
Ling, F.; Li, Z.; Chen, E. and Wang, Q. (2009). Comparison of ALOS PALSAR RVI and Landsat TM NDVI for forest area mapping, In 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar (pp. 132-135). IEEE.
Lymburner, L.; Beggs, P.J. and Jacobson, C.R. (2000). Estimation of canopy-average surface-specific leaf area using Landsat TM data, Photogrammetric Engineering and Remote Sensing66(2): 183-192.
Maleki, M.; Tavakkoli Sabour, S.; Zeaieanfirouzabadi, P. and Raeisi, M. (2018). Comparison of optic and radar data for terrain feature extraction, Journal of RS and GIS for Natural Resources, 9(2): 93-107.
Moghaddam, M.H.R.; Sedighi, A.; Fasihi, S. and Firozjaei, M.K. (2018). Effect of environmental policies in combating aeolian desertification over Sejzy Plain of Iran, Aeolian research35: 19-28.
Puleo, J.A.; Farquharson, G.; Frasier, S.J. and Holland, K.T. (2003). Comparison of optical and radar measurements of surf and swash zone velocity fields, Journal of Geophysical Research: Oceans108(C3).
Rahman, M.M.; Moran, M.S.; Thoma, D.P.; Bryant, R.; Collins, C.H.; Jackson, T. ... and Tischler, M. (2008). Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data, Remote Sensing of Environment112(2): 391-402.
Shwetha, H.R. and Kumar, D.N. (2015). Prediction of land surface temperature under cloudy conditions using microwave remote sensing and ANN, Aquatic Procedia4: 1381-1388.
Ramezani, M.R. and Sahebi, M.R. (2015). Forest Biomass Estimation Using SAR and Optical Images, Journal of Geospatial Information Technology, 3(1): 15-26.
Rocha, A.V. and Shaver, G.R. (2009). Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes, Agricultural and Forest Meteorology149(9): 1560-1563.
Rouse Jr, J.; Haas, R.H.; Schell, J.A. and Deering, D.W. (1974). Monitoring vegetation systems in the Great Plains with ERTS.
Sinha, S.; Jeganathan, C.; Sharma, L.K. and Nathawat, M.S. (2015). A review of radar remote sensing for biomass estimation, International Journal of Environmental Science and Technology12(5): 1779-1792.
Sobrino, J. A.; Jimenez-Munoz, J.C. and Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5, Remote Sensing of environment90(4): 434-440.
Stolz, M.; Li, M.; Feng, Z.; Kunert, M. and Menzel, W. (2018). High resolution automotive radar data clustering with novel cluster method, In 2018 IEEE Radar Conference (RadarConf18) (pp. 0164-0168). IEEE.
Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation, Remote sensing of Environment8(2): 127-150.
Ullah, S.; Skidmore, A.K.; Naeem, M. and Schlerf, M. (2012). An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis, Science of the total environment437: 145-152.
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, International journal of remote sensing27(14): 3025-3033.
Yue, X.; Zhao, J.;  Li, Z.; Zhang, M.; Fan, J.; Wang, L. and Wang, P. (2017). Spatial and temporal variations of the surface albedo and other factors influencing Urumqi Glacier No. 1 in Tien Shan, China, Journal of Glaciology63(241): 899-911.