بررسی اثرات خشک سالی کشاورزی بر تراکم پوشش گیاهی با استفاده از سنجش از دور (مطالعۀ موردی: حوضۀ آبریز سیمینه رود)

نوع مقاله : مقاله کامل

نویسندگان

1 دکتری رشتة اقلیم کشاورزی دانشگاه خوارزمی تهران

2 استاد ژئوانفورماتیک دانشگاه خوارزمی تهران

3 کارشناس‏ ارشد سنجش از دور و GIS دانشگاه تبریز

چکیده

در سال‏های اخیر، افت تراز سطح آب دریاچة ارومیه، بررسی میزان تغییرات آستانه‏های دمایی، رطوبتی، و تنش خشکی پوشش گیاهی را در منطقه ضرورتی اجتناب‏ناپذیر کرده است. در این تحقیق، که از نظر روش توصیفی- تحلیلی و از نظر هدف کاربردی است، از داده‏های سنجندة MODIS به‏منظور بررسی رابطة فضایی NDVI-TS و NDVI-ΔTS برای استخراج زمان وقوع خشک‏سالی کشاورزی از ژوئن تا اکتبر سال‏های 2005 تا 2008 استفاده شده است تا شاخص‏های VTCI و WDI که قادر به شناسایی تنش خشکی در مقیاس منطقه‏ای‏اند استخراج شوند. نتیجة این تحقیق نشان داد که در هر دو شاخص وضعیت تنش خشکی در سال‏های 2007 و 2008 بیشتر بوده است. همچنین، براساس رابطة فضای NDVI-TS در همة سال‏های 2005 تا 2008 شیب بالایی فضای مثلثی برای لبة گرم منفی است؛ یعنی با افزایش NDVI میزان LST کاهش یافته است؛ درحالی‏که برای لبة سرد شیب مثبت است. همچنین، شیب به‏دست‏آمده از رابطة فضای NDVI-ΔTS برای خط خشک منفی است؛ یعنی خط خشک یا خط حداقل  ETRیک همبستگی منفی با  NDVIرا نشان می‏دهد. درحالی‏که برای خط مرطوب بالاخص در سال 2008 شیب مثبت بوده و در بقیة سال‏ها تغییر محسوسی دیده نمی‏شود. پژوهش حاضر نشان داد مقدار آستانة VTCI برای تنش خشکی در سال 2007 و 2008 شدید بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Study Effects of agricultural drought on vegetation density using remote sensing Case study: Simineh Rood Watershed Basin

نویسندگان [English]

  • Adel Nabizadehbalkhkanloo 1
  • Parviz Zeaieanfirouzabadi 2
  • ALI khedmatzadeh 3
1 Department of Geography and Environmental Studies of Urmia Region 2 and Payame Noor University of Urmia
2 Kharazmi University of Tehran
3 university tabriz
چکیده [English]

Study Effects of agricultural drought on vegetation density using remote sensing
Case study: Simineh River Basin

Introduction
In recent years, lower than the water level of Lake Urmia, the study of changes in temperature, humidity and drought stress thresholds in the area of inevitability is inevitable.Drought is a difficult weather event and a "crawl" disaster. From the agricultural perspective, drought has occurred when the soil moisture is less than the actual needs of the product and leads to damage in the product. For drought analysis, the existence of an indicator for the accurate and reliable determination of wet and dry periods is very necessary.
Materials and methods:
In this descriptive-analytical and purpose-oriented study. The MODIS sensor data based on the Terra satellite was used. In these images, 8-day composite products with a resolution of 1 km and 8-day surface reflectance with a resolution of 250 m at time interval (2005 to 2008) were used for five consecutive months from June to October. Linear regression was used to derive the results. Also in this study 5.1ENVI, 10.5ARC GIS was used for analysis.The purpose of this study is to use MODIS sensor to evaluate the spatial relationship between NDVI-Ts and NDVI-ΔT for extracting real-time agricultural droughts in the Simineh River watershed from the catchment area of Lake Urmia, The VTCI Index (Vegetable Temperature Index) and WDI (Water Deficiency Indicator), which are capable of identifying regional drought stress. The second component of the material used in this research are:
1. MODIS/Terra Land Surface Temperature/Emissivity8-Day L3Global 1km SIN Grid V004
MODIS/Terra Surface Reflectance 8-Day L3 Global 250m SIN Grid V004 .2
MODIS products produce surface temperature and reflectivity, their reflection and pixel magnitude. The VTCI index (duration of drought) is based on a simplified NDVI-TS triangular space in which the "cold edge" (non-stressed conditions) is considered as a line that has the lowest temperature in the NDVI axis (X-axis) and the "hot edge" (non-availability of water) is interpreted as a negative link with the NDVI. The WDI index (drought severity) can be further labeled as the wet line or ETR with a maximum of ΔLST NDVI min and the dry line or ETR is at least equal to Δ LST NDVI max.
Results and discussion
The vegetation temperature index (VTCI) is calculated based on the relationship between the NDVI-TS triangular space. The hot and cold edge pixels are derived as linear regression equations for calculating VTCI using ENVI software in mathematical data, in which ground temperature (LST) and NDVI index images are used as input parameters for the VTCI equations Is In all these years, it is observed that the gradient for the hot edge is negative, while for the cold edge it is slightly negative or no appreciable change. The gradient shows that when the NDVI value increases for any time interval, the maximum temperature decreases. The gradient on the cold edge indicates that when the NDVI value increases.
The Water Deficit Index (WDI) is calculated on the basis of the ΔTs-NDVI spatial relationship, the wet line pixels and the dry line are determined by the linear regression equation, and the extracted equations were used to calculate WDI. In calculating this index, the difference between the surface Temperature (TS) extracted from the satellite imagery and the temperature of the weather stations (Ta) as a parameter (ΔT), and NDVI images are used as another input parameter for the WDI equations. Therefore, the wet and dry line is obtained from the NDVI-ΔTS triangular barrier. The slope obtained from the NDVI-ΔTS spatial relationship is negative for the dry line, while the gradient obtained for the wet line is positive and in the rest of the years there was no significant change. The negative slope shows that ΔT Max decreases with increasing NDVI index and positive slope shows that ΔT Min increases with increasing NDVI index.
The study period shows that the 2005-2006 period in the study area has a higher VTCI content than the years 2007-2008, which means less stress. The low VTCI has a tendency to stress and its high value indicates favorable conditions. The low VTCI value is less than its higher value in the obtained maps, which expresses the relative favorable condition of drought stress throughout the studied region. Generally, the lower Simineh, upstream of Bookan County, and to some extent the Hajiabad Plain, Miandoab, are areas that show less moisture conditions during 2005-2007. These areas, namely the Simineh River (between Miandoab and Bookan), show lower VTCI than the Simineh Rivers (between Mahabad and Bookan) and Simineh River higher (between Bookan and Saggez). The more northerly regions with high VTCI levels are less humid and have good conditions. VTCI is higher in these areas due to irrigation options that vegetation does not tend to moisture.
The WDI spatial pattern has also been studied in the Simineh River watershed from the main catchment area of Urmia Lake for the July 153 day in 2005-2008. The lower WDI represents the optimal conditions, while the higher VTCI represents the favorable conditions in that area, and the range of this index is the exact opposite of the VTCI index. According to the maps drawn from the WDI index, it can be seen that during the period from 2006 to 2008, the WDI spatial pattern is similar to the VTCI index. Although the spatial patterns of both indicators are similar, the WDI index offers a distinct class of this situation. In the entire catchment area of the Simineh River, the water stresses were severe in 2005, but gradually increased from 2006 to 2008. In the middle and upper part of the upper part, the WDI is high, indicating that all areas between Bookan and Mahabad are exposed to moisture stress. The northern Bookan districts of the northwest and the Haji-Abad area of Miandoab show relatively good conditions, and in 2008, all mid-zone regions such as the eastern, western and northern Akhtachi show a higher WDI.
The overall analysis shows that the duration and severity of stress are similar according to the VTCI index as well as the WDI index from favorable conditions to stress conditions, and shows that in general, in 2005-2007, the temperature and humidity stresses in the study area gradually, the tensions peaked in 2008.
Keywords: Agricultural Drought, Modis, VTCI, WDI, Simineh River Basin

کلیدواژه‌ها [English]

  • Simineh River Basin
  • Agricultural Drought
  • MODIS
  • VTCI
  • WDI
پرویز، لاله، خیاط خلقی، مجید، ولی‏زاده، خلیل، عراقی‏نژاد، شهاب و ایران‏نژاد، پرویز (1390). بررسی کارایی شاخص‏های منتج از فناوری سنجش از دور در ارزیابی خشک‏سالی هواشناسی؛ مطالعة موردی: حوضة آبریز سفیدرود ، جغرافیا و توسعه، شماره 22، 164-147.
شریفان، حسین و رحیمی، لیلا (1392). پایش خشک‏سالی بر اساس نمایةSPI ، دهک‏ها و نرمال، اولین همایش ملی چالش‏های منابع آب و کشاورزی، انجمن آبیاری و زهکشی ایران، دانشگاه آزاد اسالمی واحد خوراسگان، اصفهان، 1۷ بهمن، 2.
علوی‏پناه، سیدکاظم، 1382، کاربرد سـنجش از دور در علـــوم زمین، تهران: انتشـــارات دانشـــگاه تهران.
فشایی، محمد، ثنائی‏نژاد، سیدحسین و داوری، کامران (1394). تخمین رطوبت خاک با استفاده از تصاویر سنجندة مودیس (مطالعة موردی: محدودة دشت مشهد)، آب و خاک، 29(6): 1735-1748.
مفاخری، امید، خالدی، شهریار، شمسی‏پور، علی‏اکبر، فلاحی خوشجی، مصطفی و کرمانی، آذر (1395). تحلیل خشک‏سالی با استفاده از شاخص NDVI در دشت قروه و دهگلان، نشریة تحقیقات کاربردی علوم جغرافیایی دانشگاه خوارزمی، 77-79.
نبی‏زاده بلخکانلو، عادل (1397). تجزیه و تحلیل اثرات شدت و مدت خشک‏سالی کشاورزی بر عملکرد محصول با استفاده از تصاویر ماهوارة MODIS و داده‏های هواشناسی در حوضة آبریز سیمینه‏رود، پایان‏نامة دکتری، دانشگاه خوارزمی تهران.
Bhuiyan, C.; Singh, R.P. and Kogan, F.N. (2006). Monitoring Drought Dynamics in the Aravalli Region (India) Using Different Indices Based on Ground and Remote Sensing Data, International Journal of Applied Earth Observation and Geo information, 8: 289-302.
Carlson, T. N.; Gillis, R. R. and Perry, E. M. (1994). A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews, 9(1-2): 161-173.
Carlson, T.N.; Gillis, R.R. and Perry, E.M. (1994). A method to make use of thermal infrared temperature and NDVI measurements to infer soil water content and fractional vegetation cover. Remote Sensing Reviews, 9: 16-173.
Cunha, A. P. M.; Alvala, R. C.; Nobre, C. A. and Carvalho, M. A. (2015). Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agricultural and Forest Meteorology, 4: 494-505.
Fashaei, M.; Sanaei Nejad, S. H. and Davari, K. (2015). Estimation of Soil Moisture Using Modis Sensor Imagery (Case Study: Area of Mashhad Plain). Water and soil, 29(6): 1735-1748.
Feldhake, C.M.; Glenn, D. M. and Peterson, D. L. (1996). Pasture soil surface temperature response to drought. Agronomy Journal, 88(4): 652-656.
French, A.N; Schmugge, T. J. and Kustas, W. P. (2000). Discrimination of senescent vegetation using thermal emissivity contrast. Remote Sensing of Environment, 74(2): 249-254.
Han, L.; Wang, P.; Yang, H.; Liu, S. and Wang, J. (2006). Study on NDVI-T s space by combining LAI and evapotranspiration. Science in China Series D, 49(7): 747-754.
Idso, S.B.; Jackson, R.D.; Pinter, P.J. and Hatfield, J.L. (1981). Normalizing the stress degree day parameter for environmetal varibility. Agricultural Meterology, 24: 44-indices. Remote Sensing of Environment, 90(1): 53-62.
Keshavarz, M. R.; Vazifedoust, M. and Alizadeh, A. (2014). Drought monitoring using a soil wetness deficit index (SWDI) derived from MODIS satellite data. Agricultural water management, 132: 37-45
Khaledi, Sh.; Mafakhri, O. and Shamsipour. A. A. (2016). Drought analysis using the NDVI index in Qorveh and Dehgolan plain. Journal of Applied Geosciences Research, Kharazmi University No.77-79.
Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15(11): 91-100.
Kogan, F.N. (1990). Remote sensing of weather impacts on vegetation in non-homogeneous areas. International Journal of Remote Sensing, 11: 1405-1419.
Luquet, D.; Vidal, A.; Dauzat, J.; Begue, A.; Olioso, A. and Clouvel, P. (2004). Using directional TIR measurements and 3D simulations to assess the limitations and opportunities of water stress.
Mannstein, H. (1987). Surface energy budget, surface temperature and thermal inertia. In R. A.Vaughan, & D. Reidel (Eds.), Remote Sensing Applications in Meteorology and Climatology. NATO Advanced Study Institutes Series. Series C, Mathematical and Physical Sciences, Vol. 201.
Moran, M. S.; Clarke, T. R.; Inoue, Y. and Vidal, A. (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49(3): 246-263.
Nemani, R.; Pierce, L. and Running, S. (1992). Developing satellite-derived estimates of surface moisture status. Journal of Applied Meteorology, 32: 548-557.
Parida, R.B. (2006). Analysing the effect of severity and duration of Agricultural drought on crop performance using Terra/MODIS Satellite data and Meteorological data. Master Thesis. 9-22.
Parviz, L.; Khayyat khalghi, M.; Araghinezhad, Sh. and Irannezhad, P. (2011). Performance Evaluation of the Indicators of Remote Sensing Technology in Meteorological Drought Assessment; Case study: Basin of the Sefid river. 147-164.
Sandholt, I.; Rasmussen K. and Andersen J. (2002). A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status, Remote Sens. Environ., 79(2): 213-224.
Sohrabinia, M. (2012). Geostatistical analysis of surface temperature and in-situ soil moisture using LST time-series from modis, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7, 2012, XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia.  
Tang, H. and Li, Z. L. (2013). Quantitative Remote Sensing in Thermal Infrared: Theory and Applications. Springer Science & Business Media.
Tian, J., Liu, J., Wang, J., Li, C., Niea, H., and Yua, F.(2016). Trend analysis of temperature and precipitation extremes in major grain producing area of China. Int. J. Climatol. 37(2), 672-687.
Wan, Z.; Wang, P. and Li, X. (2004). Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains, USA. International Journal of RemoteSensing, 25(1): 61-72.
Wan, Z.; Zhang, Y.; Zhang, Q. and Li, Z. (2002). Validation of the land -surface temperature products retrieved from Terra Moderate Resolution Imaging Spectrometer data. Remote sensing of Environment, 83: 163-180.
Wang, P. X.; Li, X. W.; Gong, J. Y. and Song, C. (2001). Vegetation temperature condition index and its application for drought monitoring. Geoscience and Remote Sensing Symposium, 2001. IGARSS'01. IEEE 2001 International, 1: 141-143. IEEE