شناسایی، ارزیابی و مدیریت خاستگاه های گردوغبار در غرب ایران

نوع مقاله : مقاله کامل

نویسندگان

1 دانشجوی دکتری ژئومورفولوژی، گروه جغرافیا، دانشکدة ادبیات و علوم انسانی، دانشگاه رازی، کرمانشاه، ایران

2 دانشیار ژئومورفولوژی، گروه جغرافیا، دانشکدة ادبیات و علوم انسانی، دانشگاه رازی، کرمانشاه، ایران

3 استادیار اقلیم ‏شناسی، گروه جغرافیا، دانشکدة ادبیات و علوم انسانی، دانشگاه رازی، کرمانشاه، ایران

چکیده

در سال‏های اخیر پدیدۀ گردوغبار در استان‏های غربی ایران رو به فزونی گذاشته است و به موازات آن تغییرات محیطی شدیدِ رخ‏داده ذهن پژوهشگران و مدیران را، علاوه بر خاستگاه‏های خارجی، به خاستگاه‏های داخلی کشور نیز معطوف کرده است. در این تحقیق سعی شده است، با هدف مدیریت محیط، خاستگاه‏های داخلی گردوغبار در استان‏های‏ کرمانشاه و ایلام شناسایی و علل آن بررسی شود. از این رو، در این تحقیق نخست خاستگاه‏های ‏گردوغبار با استفاده از تصاویر مادیس، شاخص TDI، و مدل HYSPLIT شناسایی شد. سپس، نقشه‏های ژئومورفولوژی و تغییر کاربری اراضی تهیه شد و بر روی نقشه خاستگاه‏های گردوغبار همپوشانی شد تا توزیع و فراوانی خاستگاه‏ها در هر کلاس مشخص شود. توزیع فضایی خاستگاه‏های گردوغبار نشان می‏دهد چند منطقة مهم تولید گردوغبار در غرب این استان‏ها قرار دارد که شامل نواحی اطراف دهستان ازگله، قصرشیرین، نفت‏شهر، و سومار در استان کرمانشاه و منطقة مهران، دهلران، و روستای ابوقویر در استان ایلام است‏. بیشتر دودتوده‏های گردوغبار از مناطقی منشأ گرفته‏اند که دارای ذخایر فراوان رسوبات آبرفتی‏اند و در آن‏ها تغییر کاربری اراضی، به‏ویژه تبدیل اراضی مرتعی به کشاورزی، اتفاق افتاده است. بنابراین، برای جلوگیری از فرسایش بادی، پدیمنت‏ها، مخروط‏افکنه‏ها، دشت‏های آبرفتی، و دشت‏های سیلابی باید در اولویت برنامه‏های مبارزه با فرسایش بادی قرار گیرند و از تغییر کاربری اراضی مرتعی به کشاورزی جلوگیری شود. همچنین، با احیای پوشش گیاهی طبیعی در اراضی که تغییر کاربری صورت گرفته است وقوع گردوغبار در منطقه کاهش خواهد یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Identification, Evaluation and the Management of Dust Sources in Western Iran

نویسندگان [English]

  • Majid Ahmadi-Molaverdi 1
  • Iraj Jabbari 2
  • Amanollah Fathnia 3
1 Department of Geography, Faculty of Literature and Humanities, Razi University, Kermanshah, Iran.
2 Department of Geography, Faculty of Literature and Humanities, Razi University, Kermanshah, Iran.
3 Department of Geography, Faculty of Literature and Humanities, Razi University, Kermanshah, Iran.
چکیده [English]

Identification, Evaluation and the Management of Dust Sources in Western Iran
Extended abstract
Introduction
Dust storms are atmospheric events caused by the removal of fine particles from the surface of the earth. Not only natural but also human factors are involved in the emergence of dust. As human activities change the stability of geomorphic surfaces, areas susceptible to wind erosion may increase and the release of waste materials will increase abruptly. Dust can have devastating effects on the environment and human activities, which has many consequences for human society. Researches show that in Iran, the phenomenon of dust, especially in western provinces such as Kermanshah, is so widespread that researchers regard it as the most important environmental problem. The dust that affects the western and southwestern parts of the country is mostly trans-local and originates from neighboring countries. But in recent years, with increasing environmental changes in the country's western provinces, attention has been drawn to the potential production of domestic dust sources. A new pathway to environmental management and control measures will be opened if the dust sources are identified. Therefore, in this study, in addition to identifying the origin of dust and its prone areas in Kermanshah and Ilam provinces, it is attempted to study the characteristics of these areas in terms of land cover and geomorphology. Attempts have been made to identify the factors that have caused and exacerbated this phenomenon in recent years to prevent and reduce the occurrence of this phenomenon given the environmental conditions and facilities available.

Methods and Materials

In this study, meteorological data were used to determine the occurrence of dusty days and satellite images were utilized to identify dust sources. Days were considered as days of dust occurrence where at least one station had recorded meteorological codes related to the dust phenomenon and had a horizontal visibility of less than 1000 meters. Out of 210 days of dust, 21 images (from 2008 to 2008) were selected to identify the origin of dust and the rest were excluded for various reasons. In order to detect dust, first, MODIS images were geometrically corrected in the ENVI 5.3 software. Then, using software Erdas Imagine 9.1 and TDI Index the dust was detected. In this study, in addition to satellite imagery, Hybrid Single-Particle Lagrangian Integrated Trajectory )HYSPLIT( was also used to identify the direction of wind movement and the origin of dust. After making radiometric and atmospheric corrections, four land use classes were extracted (forest, rangeland, agriculture, and built-up land) in 2000 and 2015 with Maximum Likelihood algorithm in Software ENVI 5.3.Finally, by comparing these two maps, land use change map was prepared and seven land use changes classes (forest to rangeland, forest to agriculture, rangeland to agriculture, forests to built-up land, rangeland to built-up land and agriculture to built-up) land were extracted in total. To prepare the geomorphological map, the geomorphic classification scheme of Boulard et al. (2011) was used. For this purpose a combination of remote sensing and Landsat imagery data, 1: 100,000 geological maps of Iranian oil operating companies, the Iranian geological survey and mines exploration resources and land capability map (The soil texture profile of the area was extracted from this map) were used. After determining the geomorphic unit boundaries of each polygon, it was assigned to one of the 17 geomorphic classes classified by Boulard et al. (2011). Finally, the origin of the identified dust points was overlaid on these maps and their distribution and frequency were determined for each geomorphic class and land use change.

Results and discussion

This study identified dust sources in Kermanshah and Ilam provinces and examined the role of land use change and geomorphology with regard to dust production. A total of 396 dust sources were identified during the study period (years 2008-2013). On each image, the number of sources identified varied from 2 to 15 points. The dispersion of the dust sources detected on 21 satellite images shows that Kermanshah and Ilam provinces do not produce the same amount of dust, but most of the dust sources originate from several important areas in the west of these provinces including areas around Ezgeleh, Qasr-e Shirin, Naftshahr, Sumar, Mehran, Dehloran and Abu Ghovair village. Evaluation of the characteristics of dust sources shows that areas affected by land use change have the most potential for dust generation and among different classes of land use change, land use change from rangeland to agriculture has had the highest effect in dust production. In addition, Of the 17 geomorphic classes identified by Boulard et al. (2009), there are 6 classes in Kermanshah and Ilam province. Geomorphologically, alluvial systems are the most important producers of dust and among the different types of geomorphology, the class 2C has a more significant role in the production of dust. The dusts identified on the MODIS images show that a large number of these are originated from piedmonts and alluvial fans near the Zagros Mountains (class 2C). In addition to piedmonts and alluvial fans, alluvial plains and floodplains (3c, 3d) are other important geomorphological species in the region that have contributed significantly to the production of dust. In the seven important dust producing regions identified in Kermanshah and Ilam, different land use and geomorphology classes do not produce the same dust, so the most appropriate method for combating wind erosion should be selected in each region.
Conclusion
Evaluation of the severity of wind erosion in the dust producing areas of Kermanshah and Ilam indicates that anti-erosion methods should be prioritized in piedmonts, alluvial fans, alluvial plains and floodplains. Some measures should be taken to prevent wind erosion at the source and others should be outside the source and upstream (watershed measures).In natural ecosystems and rangelands, it is best to avoid change of use, over-grazing, etc.to prevent wind erosion. In agriculture controlling measures that make the soil less vulnerable to wind, such as crop residues, gravel mulch should be taken. Pebbles or gravels should be used to restore natural vegetation in grasslands that have become arable land.

کلیدواژه‌ها [English]

  • Dust Management
  • Land Use Change
  • Geomorphology
  • MODIS images
  • Kermanshah and Ilam
بحیرایی، ح.؛ ایازی، س. م. ه.؛ رجایی، م. ع. و احمدی، ح. (1390). تحلیل آماری سینوپتیکی پدیدة گردوغبار در استان ایلام، نگرش‏های نو در جغرافیای انسانی، 4 (1): 47-67.
جباری، ا. (1396). ژئومورفولوژی ساختمان، فرایند و زمین‏ریخت‏ها، تهران: سمت.
خوش‏کیش، ا. ا.؛ علیجانی، ب. و حجازی‏زاده، ز. (1390). تحلیل سینوپتیکی سامانه‏های گردوغبار در استان لرستان، نشریة تحقیقات کاربردی علوم جغرافیایی، 18(21): 91-110.
ذوالفقاری، ح. و عابدزاده، ح. (1384). تحلیل سینوپتیک سیستم‏های گردوغبار در غرب ایران، جغرافیا و توسعه، 6: 173-188.
رسولی، ع. ا.؛ ساری صراف، ب. و محمدی، غ. ح. (1389). تحلیل روند وقوع پدیدة اقلیمی گردوغبار در غرب کشور در ۵۵ سال اخیر با استفاده از روش‏های آمارهای ناپارامتری، فصل‏نامة جغرافیای طبیعی، 3(9): 15-28.
رنجبر سعادت­آبادی، ع. و عزیزی، ق. (1391). مطالعه­ی الگوهای هواشناسی، شناسایی چشمه­های تولید گردوغبار و مسیر حرکت ذرّات معلق برای طوفان جولای 2009، پژوهش­های جغرافیای طبیعی، 44 (3): 73-92.
شاهسونی، ع.؛ یاراحمدی، م.؛ علیرضا مصداقی‏نیا، ع.؛ یونسیان، م.؛ جعفرزاده، ن. ا.؛ نعیم‏آبادی، ا.؛ ثالثی، م. و ندافی، ک. (1391). تحلیل روند گردوغبار ورودی به ایران با تأکید بر استان خوزستان، مجلة تحقیقات نظام سلامت حکیم، 15(3): 192-202.
شمشیری، س.؛ جعفری، ر.؛ سلطانی، س. و رمضانی، ن. (1393). آشکارسازی و پهنه‏بندی ریزگردهای استان کرمانشاه با استفاده از تصاویر ماهواره‏ای MODIS، مجلة بوم‏شناسی کاربردی، 3(8): 29-42
عزیزی، ق.؛ شمسی‏پور، ع. ا.؛ میری، م. و صفرراد، ط. (1391). تحلیل آماری‏- همدیدی پدیدة گردوغبار در نیمة غربی ایران، محیط‏شناسی، 38(3): 123-134
فلاح ززولی، م.؛ وفایی‏نژاد، ع.؛ خیرخواه زرکش، م. م. و احمدی دهکاء، ف. (1393). منشأیابی گردوغبار غرب و جنوب غرب ایران و تحلیل سینوپتیکی آن با استفاده از سنجش از دور و سیستم اطلاعات جغرافیایی، سنجش از دور و سامانة اطلاعات جغرافیایی در منابع طبیعی، 5(4): 61-77.
کریمی، خ.؛ طاهری ‏شهر‏آیینی، ح.؛ حبیبی نوخندان، م. و حافظی مقدس، ن. (1390). شناسایی خاستگاه‏های تولید طوفان‏های گردوغبار در خاورمیانه با استفاده از سنجش از دور، پژوهش‏های‏ اقلیم‏شناسی، 7: 56-72.
گائودی، ا. اس. و میدلتون، ان. جی. (1390). گردوغبار بیابان در سامانة جهانی، ترجمة داریوش یاراحمدی، خرم‏آباد: انتشارات دانشگاه لرستان.
نوحه‏گر، ا.؛ خورانی، ا. و تمسکی، ا. (1392). تحلیل اقلیمی گردوغبار معلق در ایستگاه هواشناسی سرپل ذهاب (۲۰۰۹ - ۱۹۸۶)، نشریة جغرافیا و مخاطرات محیطی، 2(6): 89-102.
Al-Ansari, N.A. (2013). Management of water resources in Iraq: perspectives and prognoses, Engineering, 5(6): 667-684.
Arimoto, R. (2001). Eolian dust and climate: relationships to sources, tropospheric chemistry, transport and deposition, Earth-Science Reviews, 54(1-3): 29-42.
Armbrust, D. V. (1977). A review of mulches to control wind erosion, Transactions of the ASAE, 20(5): 904-0905.
Azizi, G.; Shamsipour, A.; Miri, M. and Safarrad, T. (2012). Synoptic and remote sensing analysis of dust events in southwestern Iran, Natural hazards, 64(2): 1625-1638.
Azizi, Gh.; Shamsipour, A.A.; Miri, M. and Safarrad, T. (2012). Statistic and Synoptic Analysis of Dust Phenomena in West of Iran, Journal of Environmental Studies, 38(3): 123-134.
Bahiraei, H.; Ayazi, S. M. H.; Rajaei, M. A. and Ahmadi, H. (2011). Synoptic Statistical Analyze Dust Phenomenon in Ilam Province, Quarterly Journal of Human Geography, 4(1): 47-67.
Bielders, C. L.; Alvey, S. and Cronyn, N. (2001). Wind erosion: the perspective of grass‐roots communities in the Sahel, Land Degradation & Development, 12(1): 57-70.
Boloorani, A. D.; Nabavi, S. O.; Bahrami, H. A.; Mirzapour, F.; Kavosi, M.; Abasi, E. and Azizi, R. (2014). Investigation of dust storms entering Western Iran using remotely sensed data and synoptic analysis, Journal of Environmental Health Science and Engineering, 12(1): 124.
Bullard, J. E.; Harrison, S. P.; Baddock, M. C.; Drake, N.; Gill, T. E.; McTainsh, G. and Sun, Y. (2011). Preferential dust sources: A geomorphological classification designed for use in global dust‐cycle models, Journal of Geophysical Research: Earth Surface, 116(F4).
Bullard, J.; Baddock, M.; McTainsh, G. and Leys, J. (2008). Sub‐basin scale dust source geomorphology detected using MODIS, Geophysical Research Letters, 35(15).
Fallah Zazuli, M.; Vafaeinezhad, A. R.; Kheirkhah Zarkesh, M. M. and Ahmadi Dehka, F. (2014). Source routing of dust haze phenomenon in the west and southwest of Iran and its synoptic analysis by using remote sensing and GIS, Journal of RS and GIS for Natural Resources, 5(4): 61-77.
Fox, T. A.; Barchyn, T. E. and Hugenholtz, C. H. (2012). Successes of soil conservation in the Canadian Prairies highlighted by a historical decline in blowing dust, Environmental Research Letters, 7(1): 014008.
Fryrear, D. W. (1985). Soil cover and wind erosion, Transactions of the ASAE, 28(3): 781-0784.
Gerivani, H.; Lashkaripour, G. R.; Ghafoori, M. and Jalali, N. (2011). The source of dust storm in Iran: a case study based on geological information and rainfall data, Carpathian Journal of Earth and Environmental Sciences, 6(1): 297-308.
Gill, T. E. (1996). Eolian sediments generated by anthropogenic disturbance of playas: human impacts on the geomorphic system and geomorphic impacts on the human system, Geomorphology, 17(1-3): 207-228.
Goudi, A. S. and Middleton, N. J. (2011). Desert dust in the global system, Translated by: Dariush Yarahmadi, Lorestan University, Khorramabad.
Hahnenberger, M. and Nicoll, K. (2014). Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, USA, Geomorphology, 204: 657-672.
Hao, X. and Qu, J. J. (2007). Saharan dust storm detection using moderate resolution imaging spectroradiometer thermal infrared bands, Journal of Applied Remote Sensing, 1(1): 013510.
Jabbari, I. (2017). Geomorphology Structure, Process and Landforms, SAMT Publication. Tehran
Jafari, R. and Malekian, M. (2015). Comparison and evaluation of dust detection algorithms using MODIS Aqua/Terra Level 1B data and MODIS/OMI dust products in the Middle East, International Journal of Remote Sensing, 36(2): 597-617.
Karimi, Kh.; Taheri Shahraiynih. H.; Habibi Nokhandanm, M. and Hafezi Moghaddas, N. (2011). Identification of the Point Sources of Dust Storms in the Middle East Using Remote Sensing, Journal of Climate Research, 7: 56-72.
Khoshkish, A.; Alijani B. and Hejazizadeh, Z. (2011). Synoptic analysis of dust storms in the Lorestan Province, Iran, Scientific Journals Management System, 18(21): 91-110.
Kim, J. (2008). Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965–2004), Atmospheric Environment, 42(19): 4778-4789.
Krasnov, H.; Katra, I. and Friger, M. (2016). Increase in dust storm related PM10 concentrations: A time series analysis of 2001–2015, Environmental pollution, 213: 36-42.
Lee, J. A.; Gill, T. E.; Mulligan, K. R.; Acosta, M. D. and Perez, A. E. (2009). Land use/land cover and point sources of the 15 December 2003 dust storm in southwestern North America, Geomorphology, 105(1-2): 18-27.
Li, W. and Huntsinger, L. (2011). China’s grassland contract policy and its impacts on herder ability to benefit in Inner Mongolia: tragic feedbacks, Ecology and Society, 16(2).
Long, X.; Tie, X.; Li, G.; Cao, J.; Feng, T.; Zhao, S.; Xing, L. and An, Z. (2018). Effect of ecological restoration programs on dust concentrations in the North China Plain: a case study, Atmospheric Chemistry and Physics, 18(9): 6353-6366.
Mahowald, N. M.; Baker, A. R.; Bergametti, G.; Brooks, N.; Duce, R. A.; Jickells, T. D.; Kubilay, N.; Prospero, J.M. and Tegen, I. (2005). Atmospheric global dust cycle and iron inputs to the ocean, Global biogeochemical cycles, 19(4).
Middleton, N. and Kang, U. (2017). Sand and dust storms: impact mitigation, Sustainability, 9(6): 1053.
Nohegar, A.; Khoorani, A. and Tamassoki, E. (2013). Climate Analysis of suspended Dust Storms in Sar-Pol-Zohab Station (1986 to 2009), Journal of Geography and Environmental Hazards, 2(6): 89-102.
Nordstrom, K. F. and Hotta, S. (2004). Wind erosion from cropland in the USA: a review of problems, solutions and prospects, Geoderma, 121(3-4): 157-167.
Notaro, M.; Yu, Y. and Kalashnikova, O. V. (2015). Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought, Journal of Geophysical Research: Atmospheres, 120(19): 10-229.
Rasouli A. A.; Sari Sarraf, B. and Mohammadi G .H. (2010). Trend analysis the number of dusty days in the past 55 years in the west of Iran, using non-parametric statistics, Journal of Physical Geography, 3(9): 15-28.
Raupach, M. R.; Gillette, D. A. and Leys, J. F. (1993). The effect of roughness elements on wind erosion threshold, Journal of Geophysical Research: Atmospheres, 98(D2): 3023-3029.
Ravi, S.; D'Odorico, P.; Breshears, D. D.; Field, J. P.; Goudie, A. S.; Huxman, T. E.; Li, J.; Okin, G.S.; Swap, R.J.; Thomas, A.D. and Van Pelt, S. (2011). Aeolian processes and the biosphere, Reviews of Geophysics, 49(3).
Riksen, M.; Brouwer, F. and de Graaff, J. (2003). Soil conservation policy measures to control wind erosion in northwestern Europe, Catena, 52(3-4): 309-326.
Shahsavani, A.; Yarahmadi, M.; Mesdaghinia, A.; Younesian, M.; Jaafarzadeh Haghighifard, N.; Naimabadi, A.; Salesi, M. and Naddafi, K. (2012) . Analysis of Dust Storms Entering Iran with Emphasis on Khuzestan Province, Hakim Health Systems research Journal, 15(3): 192-202.
Shamshiri, S.; Jafari, R.; Soltani, S. and Ramezani, N. (2014). Dust Detection and Mapping in Kermanshah Province Using MODIS Satellite Imagery, Iranian Journal of Applied Ecology, 3(8): 29-42.
Shepherd, G.; Terradellas, E.; Baklanov, A.; Kang, U.; Sprigg, W.; Nickovic, S.; ... and Sealy, A. (2016). Global assessment of sand and dust storms.
Sissakian, V.; Al-Ansari, N. and Knutsson, S. (2013). Sand and dust storm events in Iraq, Journal of Natural Science, 5(10): 1084-1094.
Song, H.; Zhang, K.; Piao, S. and Wan, S. (2016). Spatial and temporal variations of spring dust emissions in northern China over the last 30 years, Atmospheric environment, 126: 117-127.
Sterk, G. (2003). Causes, consequences and control of wind erosion in Sahelian Africa: a review, Land Degradation & Development, 14(1): 95-108.
Sun, J.; Zhang, M. and Liu, T. (2001). Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate, Journal of Geophysical Research: Atmospheres, 106(D10): 10325-10333.
Tam, W. W.; Wong, T. W.; Wong, A. H. and Hui, D. S. (2012). Effect of dust storm events on daily emergency admissions for respiratory diseases, Respirology, 17(1): 143-148.
Tan, M. and Li, X. (2015). Does the Green Great Wall effectively decrease dust storm intensity in China? A study based on NOAA NDVI and weather station data, Land Use Policy, 43: 42-47.
Zhou, Z. and Wang, X. (2002). Analysis of the severe group dust storms in eastern part of northwest China, Journal of Geographical Sciences, 12: 357-362.
Zolfaghari, H. and Abedzadeh. H. (2005). A Synoptic Analysis of Dust Systems at the West Part of Iran, Geography and Development Iranian Journal, 6: 173-188.