پایش سیلاب‌های واریزه‌ای-یخچالی با استفاده از اینترفرومتری راداری مطالعه موردی: سیلاب مرداد 1401 اشترانکوه، تکنیک ردیابی و پایش جابجاشدگی ها

نوع مقاله : مقاله کامل

نویسندگان

گروه جغرافیای طبیعی، دانشکده جغرافیا، دانشگاه تهران، تهران

10.22059/jphgr.2023.355408.1007750

چکیده

پایش عملکرد و تغییرات محیطی ناشی از سیلاب‌های واریزه‌ای در برنامه‌ریزی و مدیریت آمایش سرزمین نقش مهمی دارد. بارش‌های مونسونی تابستان 1401 در مناطق وسیعی از ایران به وقوع پیوست که در اشترانکوه سبب ایجاد سیلابی واریزه‌ای-یخچالی شد. همچنین تغییرات مورفولوژیکی قابل‌توجهی بر مهم‌ترین رودخانه این منطقه (کمندان) داشت و به تأسیسات انتقال آب شهرهای ازنا و الیگودرز آسیب وارد شد. امروزه روش‌های راداری در مطالعه ابعاد کیفی و کمی جریان‌های واریزه‌ای، با دقتی بالا و هزینه‌ای کم مؤثر هستند، این پژوهش نیز جهت ردیابی منشأ رسوبات واریزه‌ای - یخچالی از روش‌های راداری و داده‌های Sentinel-1 و شاخص (NDSI) برای ارزیابی تأثیر ذوب ناگهانی برف در برف‌چال‌های منطقه استفاده کرده است. نتایج بیانگر ذوب ناگهانی برف‌چال‌های منطقه به دلیل بارش مونسونی بود که در ایجاد سیلاب واریزه‌ای-یخچالی نقش مهمی را ایفا کرده بود. این جریان با گذر از دره‌های یخچالی این منطقه، رسوبات و بقایای گیاهی این ناحیه را بر روی تأسیسات انتقال آب منتقل و خسارت‌های زیادی به آن‌ها وارد کرده بودند. تحلیل راداری پهنه‌های آبی نیز نشان دادند که سد کمندان قبل از مرحله آبگیری، با جذب سیلاب در خود، مانع از ورود آسیب‌های جدی‌تر به مناطق پایین‌دست شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Monitoring of Debris-glacial floods by radar interferometry (case study: Debris-glacial flood of 2022 in Oshtorankuh East Lorestan)

نویسندگان [English]

  • Abolghasem Goorabi
  • Seiyed Mossa Hosseini
  • Pouya Kamrani
Department of Natural Geography, Faculty of Geography, University of Tehran, Tehran
چکیده [English]

A B S T R A C T
Monitoring the performance and environmental changes caused by deposited floods play an important role in land planning and management. Monson's rains in summer 1401 occurred in large areas of Iran, which in the Astran Mountain created a flood of deposits. It also had significant morphological changes to the most important river in the area  and damaged the water transfer facilities of the cities of Azna and Aligudarz . Nowadays, radar methods are effective in studying qualitative and quantitative dimensions of deposited flows, with high accuracy and low cost, and this study is also for tracking the origin of deposits-ally from radar and Sentinel-1 and index data (NDSI) to evaluate the impact of sudden snow melting. Used in snowmelts in the area. The results indicated the sudden melting of snowmelts in the area due to Monson's rainfall, which played an important role in the creation of a deposited-water flood. The flow through the glacier valleys of the area, the plant's sediments and remnants of the area were transferred to water transfer facilities and caused a lot of damage to them. Radar analysis of water zones also showed that the Kamandan Dam before the flooding phase has prevented more serious damage to the downstream
Extended Abstract
Introduction
Natural hazards can affect living beings and especially humans in various scales. Also, geomorphological hazards are considered one of its most important sub-sections. Also, it is necessary to record information such as: magnitude, frequency, extent of the area, speed of onset, spatial distribution and time interval for each of the geomorphic hazards. Every year debris floods cause great damages to humans and significant geomorphic changes in the mountaneous basins. Debris floods carry a lot of sediments along with the remains of plants, trees and large boulders for a long distance and in a short time, they have the ability to cause significant human and financial losses in the downstream areas. In general, a flash flood phenomenon has three parts: 1- source area, 2- transfer area, and 3- accumulation area. Monitoring and environmental changes caused by debris floods play an important role in planning and managing land use. ongoing land use and climate changes increases the frequency of debris floods. Due to complexity of flood debris occurance mechanism, it attract many researchers attentions.Since, the debris floods in mountainous areas, contain glacial sediments, it also called debris-glacial floods. The researchers identify the heavy rains that happened in a short period of time and the melting of snowdrifts and the sudden increase in air temperature in the mountainous areas as the main driving factors for the occurrence of devastating debris floods. Tracing the origin of glacial sediment production in flood in different parts of a mountain can help us in the implementation of protection plans to identify sediment production areas and prevent their transfer in subsequent floods to the downstream areas. One of the technologies for tracking and monitoring debris-glacial floods is the use of interferometric radar. One of the techniques used in interferometric radar is the use of offset tracking, that its efficienvy is proven in the studies related to monitoring glaciers, landslides, and moving dunes. Monsoon rains in the summer of 1401 occurred in large areas of Iran, which caused avalanche-glacial floods in Oshtorankuh. In this study, the interferometric method was used to trace the origin of the debris flood event occur at july 2022 in Oshtorankuh area located in eastern Lorestan.
 
Materials and methods
The type of this sudy is applied-developmental research and its method is analytical-field. The input data used for this research is Sentinel 1A_IW-GRDH data in two ascending and descending orbits for use in offset tracking and McVitie techniques and Sentinel-2A data for use in the NDSI index. The offset tracking technique was used to determine the places in the Oshtorankuh with the most sediment mass displacement. This method is based on the calculation of the displacement in the pixel unit using the optimization of the mutual correlation between the pair of images resulting from the phase intensity of the SAR data. Also, the Normalized-Difference Snow Index (NDSI) was used to monitor the condition of the snow reserves of Oshtorankuh before and after the monsoon rains. This index is based on low reflectance in the mid-infrared and high reflectance in the visible region, which can distinguish snow-covered areas from non-snowy and cloudy areas. McVittie technique was used to determine the situation and prepare a flood map downstream of the Kamandan basin.
 
Result and discussion
By using the offset tracking technique, the soil masses displacemant after the northeast monsoon rains of Oshtorankuh (Kamandan) in two descending orbits and ascending orbits were identified and analyzed. The results show that the highest recorded values are due to displacement tracking belonging to the cirques, snowdrifts, and glacial deposits of Oshtorankuh. Also, the highest displacement and speed of movement related to the sediments of Kol-e Geno Cirque and Aznadar glacial deposits are located in and at the lower levels of the sediments in Kol Jeno and Aznader glacial valleys. From this event, the V shape (interglacial period) was in the U-shaped bed (glacial period), it has given its place again to the U shape (caused by the sediments carried by the debris flow). Also, the changes in snow cover before and after the monsoon rains were poreover, the results revealed melting of all the snowfields located around the cirques and glacier valleys of Kol-e Geno and Eznader ranges in the period. Also, the morphological responses of the waterways to the debris-glacial flood event were not the identical, and some responded by digging or filling. Another point is that the degree of sphericity and poor compaction of the sediments transported by the debris flood shows that there are few channel erosions in them and most of them are from the glacial sedimentary deposits of this mountain such as the end parts of the cirques and moraines. This dangerous event also caused a lot of damage to the water conceyancy structures and canals from this region to Aliguderz and Azna. The condition of the downstream basin and the recently drained Kamdan Dam showed the retention effect of this structure on preventing the flooding of the downstream parts.
 
Conclusion
Nowadays, the use of interferometric radar in monitoring environmental changes has become a popular and practical tool. In this research, it was found that it is possible to evaluate and identify the displacement and origin of sediment deposits, as well, quantify their speed and movement patterns using interferometric radar and the Offset tracking technique. The monsoon event occurred at July 2022 leads to sudden melting of the snowfields in Oshtorankuh played and a flash floods along with glacial deposits. But field evidence showed that waterway responses to this event is not identical. Considering that this region plays an important role in supplying water to its neighboring cities and some regions of central Iran, the results of this research can be used in the management and supply of water resources and the management of torrential floods to reduce possible damages to water transmission channels. The evaluation of the floodplains in the lower basin shows that the dams can be at risk of being filled with deposited sediments. Therefore, it is requested that the potential of a deposited flood be taken into account in the location stage. Although Kamandan reservoir stored a significant part of the flood and prevented damage to the residential and agricultural areas downstream of the dam.
 
Funding
There is no funding support.
 
Authors Contribution
All of the authors approved thecontent of the manuscript and agreed on all aspects of the work.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.
 
 
 

کلیدواژه‌ها [English]

  • Debris-glacial Flood
  • Oshtorankuh
  • Radar interferometry
  • Offset tracking Technique
  1. احمدآبادی، علی؛ فتح­اله زاده، محمد؛ کیانی، طیبه و عمادالدین، فاطمه. (1397). تعیین و بررسی سیرک‌های یخچالی اشترانکوه با استفاده از شاخص نرمال شده پوشش برف (NDSI). هیدروژئومورفولوژی، 19(5)، 18-1.
  2. پژوهشکده سوانح طبیعی. (1401). گزارش سیلاب مرداد 1401، وزارت علوم، تحقیقات و فناوری.
  3. خبرگزاری ایرنا. (1401). مصاحبه با مدیرعامل شرکت آب منطقه‌ای لرستان.https://www.irna.ir/news/84847685/
  4. شرکت مدیریت منابع آب ایران، دفتر مطالعات منابع پایه آب. (1401). پورتال ارائه آمار پایه، https://stu.wrm.ir/
  5. گورابی، ابوالقاسم. (1401). دورسنجی در ژئومورفولوژی. تهران: انتخاب.
  6. گورابی، ابوالقاسم. (1401). ژئومورفومتری: مفاهیم، نرم افزار، کاربردها. تهران: انتخاب.
  7. یمانی، مجتبی. (1396). نقشه‌های ژئومورفولوژی. چاپ سوم، تهران: انتشارات دانشگاه تهران.
  8. Abdalla Mahmoud, A., Novellino, A., Hussain, E., Marsh, S., Psimoulis, P., & Smith, M. (2020). The Use of SAR Offset Tracking for Detecting Sand Dune Movement in Sudan. Remote Sens, 12, 3410.
  9. Ahmedabadi, A., Fathullah Zadeh, M., Kayani, T., & Emaduddin, F. (2017). Determining and investigating Ashtrankoh glacier cirques using the normalized snow cover index (NDSI). Hydrogeomorphology, 19(5), 1-18. [In Persian].
  10. Bamler, R., & Eineder, M. (2005). Accuracy of differential shift estimation by correlation and split‐bandwidth interferometry for wideband and delta‐k SAR systems. IEEE Geoscience and Remote Sensing Letters, 2(2), 151–155.
  11. Calligaris, C., & Zini, L. (2012). Debris Flow Phenomena: A Short Overview?. In book: Earth Sciences, Intech.
  12. Coe, J.A., Kean, J.W., Godt, J.W., Baum, R.L., Jones, E.S., Gochis, D.J., & Anderson, G.S. (2014). New insights into debris-flow hazards from an extraordinary event in the Colorado Front Range. GSA Today, 24, 4–10.
  13. Coronese, M., Lamperti, F., Keller, K., Chiaromonte, F., & Roventini, A. (2019). Evidence for sharp increase in the economic damages of extreme natural disasters. Natl. Acad. Sci. USA, 116, 21450– 21455.
  14. Darvishi, M., Schlögel, R., Bruzzone, L., & Cuozzo, G. (2018). Integration of PSI, MAI, and Intensity-Based Sub-Pixel Offset Tracking Results for Landslide Monitoring with X-Band Corner Reflectors—Italian Alps (Corvara). Remote Sens, 10(3), 409.
  15. Destro, E., Amponsah, W., Nikolopoulos, E., Marchi, L., Marra, F., Zoccatelli, D., & Borga, M. (2018). Coupled prediction of flash flood response and debris flow occurrence: Application on an alpine extreme flood event. Jornal of Hydrology, 558, 225-237,
  16. Gourabi, A. (2022). Geomorphometry: concepts, software, application Tehran: Nashre entekhab. [In Persian].
  17. Gourabi, A. (2022). Telemetry in geomorphology. Tehran: Nashre entekhab. [In Persian].
  18. Handayani, L., Trisasongko, B., & Tjahjono, B. (2015). Geomorphology analysis of lava flow of Mt. Guntur in West Java using Synthetic Aperture Radar (SAR) with fully polarimetry, The 1st International Symposium on LAPAN-IPB Satellite for Food Security and Environmental Monitoring. Procedia Environmental Sciences, 24, 303 – 307.
  19. Iran Water Resources Management Company, Basic Water Resources Studies Office. (2022). basic statistics presentation portal, https://stu.wrm.ir/[In Persian].
  20. IRNA news agency. (2022). Interview with the CEO of Lorestan Regional Water Company. https://www.irna.ir/news/84847685/[In Persian].
  21. Lee, S., An, H., Kim, M., Lim, H., & Kim, Y. (2022). A Simple Deposition Model for Debris Flow Simulation Considering the Erosion– Entrainment–Deposition Process. Remote Sens, 1-18.
  22. Li, Y., Jiano, Q., Hu, X., Li, Z., Li, B., Zhang, J., Jiano, W., Luo, Y., Li, Q., & Ba, R. (2020). Detecting the slope movement after the 2018 Baige Landslides based on ground-based and space-borne radar observations. Int J Appl Earth Obs Geoinformation, 84. 101949
  23. Liu, Z., Xu, B., Wang, Q., Yu, W., & Miao, Z. (2022). Monitoring landslide associated with reservoir impoundment using synthetic aperture radar interferometry: A case study of the Yalong reservoir. Geodesy and Geodynamics, 13, 138-150.
  24. Lu, J., & Veci, L. (2016). Offset Tracking Tutorial, Array Systems Computing Inc, http://step.esa.int/.
  25. Marston, R., Butler, W., & Patch, N. (2017). Geomorphic hazards. The International Encyclopedia of Geography. Published by John Wiley & Sons, Ltd.
  26. McVittie, A. (2019). Flood mapping tutorial (Sentinel-1). SkyWatch Space Applications Inc, http://step.esa.int/.
  27. Mondini, A., Guzzetti, F., Chang, K., Monserrat, O., Martha, T., & Manconi, A. (2021). Landslide failures detection and mapping using Synthetic Aperture Radar: Past, present and future. Earth-Science Reviews, 216,103574
  28. Moreiras, S.M., Sepúlveda, S.A., Correas-González, M., Lauro, C., Vergara, I., Jeanneret, P., Junquera-Torrado, S., Cuevas, J.G., Maldonado, A., & Antinao, J.L. (2021). Debris Flows Occurrence in the Semiarid Central Andes under Climate Change Scenario. Geosciences, 11, 43, 1-25.
  29. Novak, A., Tomislav, P., Levanič, T., Šmuc, A., & Kaczka, R. (2020). Debris flooding magnitude estimation based on relation between dendrogeomorphological and meteorological records. Geomorphology, 367, 1-12,
  30. Palau, R., Hürlimann, M., Berenguer, M., & Sempere-Torres, D. (2019). Debris-flow early warning system at regional scale using weather radar and susceptibility mapping. 7th International Conference on Debris-Flow Hazards Mitigation, At: Golden, Colorado, USA.
  31. Research Institute of Natural Disasters. (2022). August 1401 flood report, Ministry of Science, Research and Technology. [In Persian].
  32. Riveros, N., Euillades, L., Euillades, P., Moreiras, S., & Balbarani, S. (2013). Offset tracking procedure applied to high resolution SAR data on Discussions Viedma Glacier, Patagonian Andes, Argentina, Adv. , 35, 7–13.
  33. Sati, V. (2022). Glacier bursts-triggered debris flow and flash flood in Rishi and Dhauli Ganga valleys: A study on its causes and consequences. Natural Hazards Research, 2, 33-40.
  34. Schraml, K., Kogelnig, B., Scheidl, C., Stoffel, M., & Kaitna, R. (2013). Estimation of debris flood magnitudes based on dendrogeomorphic data and semi-empirical relationships. Geomorphology, 201, 80-85.
  35. Seo, S., Park, Y., Kim, K. (2020). Tracking flood debris using satellite-derived ocean color and particle-tracking modeling. Marine Pollution Bulletin ,161, 1-10
  36. Sibandze, P., Mhangara, P., Odindi, J., & Kganyago, M. (2014). A Comparison of Normalised Difference Snow Index (NDSI) and Normalised Difference Principal Component Snow Index (NDPCSI) techniques in distinguishing snow from related cover types. South African Journal of Geomatics, 3(2):197-209.
  37. Singhroy, V., Li, J., Blais –Stevens, A., & Fobert, M. (2018). I NSAR MONITORING OF PIPELINE ROUTES. IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium, 212-215.
  38. Stock, J.D., & Dietrich, W.E. (2006). Erosion of steepland valleys by debris flows. Geological Society of America Bulletin, 118, (9–10), 1125–1148.
  39. Stoffel, M., & Wilford, D.J. (2012). Hydrogeomorphic processes and vegetation: distur bance, process histories, dependencies and interactions. Earth Surface Processes and Landforms 37, 9–22.
  40. Strozzi, T., Caduf, R., Jones, N., Barboux, C., Delaloye, R., Bodin, X., Kääb, A., Mätzler, E., & Schrott, L. (2020). Monitoring Rock Glacier Kinematics with Satellite Synthetic Aperture Radar. Remote Sens., 12, 559.
  41. Tay, C., Yun, S., Chin, S., Bhardwaj, A., Jung, J., & Hill, E. (2020). Rapid food and damage mapping using synthetic aperture radar in response to Typhoon Hagibis, Japan, http://www.nature.com/scientificdata.
  42. Trogrli, R., Donovan, A., & Malamud, B. (2022). Invited perspectives: Views of 350 natural hazard community members on key challenges in natural hazards research and the Sustainable Development Goals. Hazards Earth Syst. Sci., 22, 2771–2790,
  43. Wilford, D., Sakals, M., Innes, J., Sidle, R., Bergerud, W. (2004). Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 1, 61–66,
  44. WMO (World Meterological Organization): WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019) (WMO-No. 1267), WMO, Geneva, 90 pp., https://library.wmo.int/doc_num.php?explnum_ id=10989 (last access: 1 May 2022),
  45. Xu, Y., Lu, Z., Schulz, W. H., & Kim, J. (2020). Twelve‐Year Dynamics and Rainfall Thresholds for Alternating Creep and Rapid Movement of the Hooskanaden Landslide From Integrating InSAR, Pixel Offset Tracking, and Borehole and Hydrological Measurements. Journal of Geophysical Research: Earth Surface, 125.
  46. Yamani, M. (2016). Geomorphological maps. Third edition, Tehran: Tehran University Press. [In Persian].
  47. Zhao, G., Wang, L., Deng, K., Wang, M., Xu, Y., Zheng, M., & Luo, Q. (2022). An Adaptive Offset-Tracking Method Based on Deformation Gradients and Image Noises for Mining Deformation Monitoring. Remote Sens. 13, 2958.
دوره 54، شماره 4
این شماره با همکاری و مشارکت «انجمن ایرانی ژئومورفولوژی» منتشر شده است، بدینوسیله از مشارکت این انجمن در «داوری مقالات» ، «معرفی داوران» و «دبیران تخصصی » و «شرکت در جلسات و نشست های مرتبط» تشکر می گردد.
بهمن 1401
صفحه 497-511
  • تاریخ دریافت: 11 شهریور 1401
  • تاریخ بازنگری: 10 آذر 1401
  • تاریخ پذیرش: 12 بهمن 1401