بررسی ارتباط الگوپذیری تغییرات زمانی دما و بیماری سالک در استان اصفهان

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 استادیار اقلیم‌شناسی، دانشکدة علوم اجتماعی، دانشگاه پیام نور تهران، ایران

2 استادیار بیماری‌های عفونی، مرکز تحقیقات نقص ایمنی، دانشگاه علوم پزشکی اصفهان، ایران

3 دانشجوی کارشناسی ارشد، دانشگاه پیام نور اصفهان

چکیده

هدف از این مطالعه بررسی ارتباط الگوهای زمانی (روند و فصلی) دما و بیماری سالک در استان اصفهان است. در این پژوهش از داده‏های ماهانه، فصلی، و سالانة دما در دورة 35‌ساله (1979 ـ 2014) در سیزده ایستگاه سینوپتیک و داده‏های ماهانه، فصلی، و سالانة بیماری سالک در دورة ده‌ساله (2005 ـ 2014) در سیزده کانون در سطح استان استفاده شده است. روش تحقیق مبتنی بر تحلیل‏های آماری چندمتغیره و مدل‏های سری زمانی روند و فصلی است. با توجه به روش‏ها و مدل‏های کاربردی بر روی‏ داده‏ها، دما دارای روند غیرنقطه‏ای معنی‏دار با الگوهای متفاوتی بوده است و به طریقی سری دمای ایستگاه‏های انتخابی از الگوهای روند پیروی می‏کنند (شهرضا و کاشان با روند کاهشی و بقیة ایستگاه‏ها با روند افزایشی)؛ در حالی ‏که تغییرات بیماری سالک به‏جز در سه کانون (خور و بیابانک، کاشان، و شهرضا با روند افزایشی و بقیة کانون‏ها بدون روند) فاقد الگوی روند بوده است. از طرفی، روندهای نقطه‏ای دما و بیماری سالک الگوی مشابهی را نشان می‏دهند. همچنین، تغییرات دما و بیماری سالک در سطح استان تابع الگوهای فصلی سری زمانی بوده است. نتایج پژوهش نشان می‏دهد دما و بیماری تابع الگوی فصلی‌اند با این تفاوت که بیشترین (کمترین) موارد بیماری در فصل پاییز (بهار) با یک تأخیر زمانی فصلی نسبت به بیشترین (کمترین) دما در فصل تابستان (زمستان) اتفاق می‏افتد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A survey of variability relationship between temporal variations of temperature and Cutaneous Leishmaniasis disease in Isfahan Province

نویسندگان [English]

  • Majid Javari 1
  • Kiana Shirani 2
  • Zahra Karimi 3
1 Assistant Professor of Climatology, College of Social Science, Payame Noor University, Iran
2 Assistant Professor of Infectious Diseases, Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
3 M.Sc. Student in Climatology, Payame Noor University, Isfahan, Iran
چکیده [English]

Introduction
Changes of climatic elements such as temperature on a temporal scale follow different patterns under various trend and seasonal models. Associated with these changes, many environment elements are affected. One of the most important effects of climate is on health. Cutaneous Leishmaniasis (CL) is one type of disease caused by protozoan parasites of the genus Leis mania and localized CL in various countries as stated by Alvar et al. (2012). The agent of this disease is transmitted into the skin of mammalian host by a kind of female sand flies. CL is a major neglected tropical disease (Alvar et al., 2012) with a complex ecology, whose transmission, in the New World, requires the co-existence of vectors, reservoirs and humans. The importance of temperature variations and anomalies for temporal variations in the diseases has been well recognized. Temperature variations can enhance diseases through environmental process.
 
Materials and Methods
Study region (◦N, ◦50_E) is approximately 33 km2 and situated in the center of Ira. It is ranged from 25o 3’ to 39o 47’ N and from 44o 5’ to 63o 18’ E. We want to make identification of temperatures effects on CL in order to better forecast the CL variations in Isfahan Province. With regard to temperature changes in Isfahan Province, we chose 13 stations. The temperature was obtained from meteorological organization and included the monthly, seasonal and annual information of 13 stations in Isfahan Province for the period of 1979-2014. All the observed temperature data have been subject to strict quality control obtained from http://www.irimo.ir/eng/wd/720-Products-Services.html. The study focused on monthly and seasonal variations. The CL data were obtained from Heath Center of Isfahan and Kashan Heath Center and included the monthly, seasonal and annual information of 13 cities in Isfahan Province.
Study of temperature trend on CL changes is based on exploratory and confirmatory analyses with the incorporation of trended and non-trend patterns of predictor variables on response variables. Trend model is a multivariate statistical method that uses factor analysis to evaluate the relationship between temperature and CL (Paul & Anderson, 2013). Application of this technique in climatology leads to this question of how the trend pattern among temperature variables and the CL factors are studied. Trend model analysis can be used to answer this question. We studied the possible trend patterns between temperature and CL. Upward and downward trends of temperature on CL is highly related to the relationship link between temperatures and CL. Nevertheless, temperature could influence CL with only no direct link between temperature and CL.
Results and Discussion
The temperature and CL trends are addressed about the effects of temperature variables or the variables which are not directly observable. These temperature variables are measured by several trend models. Concerning the relationship of temperature trend on CL, three indicators of monthly, seasonal and annual temperature indices and CL data were studied with respect to research model. The test of the model is done along with testing the measurement model, analyzing and forecasting models. Hence, the distribution of temperature and CL data showed a suitable time series patterns. Also, the results show that the series of temperature have an acceptable trend and the mentioned constructs of research have a suitable diagnostic trend. Also, the results show that the series of CL disease have an acceptable seasonality in the stations. The mentioned constructs of the research have a suitable diagnostic seasonal pattern. In order to evaluate the relationship of temperature elements trend and CL disease, linear model to being noncompliance into trend model, the data from analysis model were extracted, and the forecasted temperatures relationship to CL disease were obtained.
Conclusion
A primary purpose of our study was zoning of temperature and CL data trend. Our other aim was to examine the relationship of the temperature and CL disease trend in causal indicators. The results indicated that there are relationship of trend between temperature and CL disease in Isfahan province. The findings of this study also indicated that among the temperature values influential on CL disease, the monthly temperature factor had the highest effect on the rate of CL disease. The results show that temperature and disease are followed to a seasonal pattern, with the highest (lowest) cases in autumn (spring) season with a seasonal time delay to the maximum (minimum) temperature in summer winter.

کلیدواژه‌ها [English]

  • Cutaneous Leishmaniasis
  • Disease
  • Isfahan province
  • temperature
  • trend
آروین (اسپنانی)، ع.ع.؛ مظفری، غ. ع. و نوروز باقری، ج. (1392). بررسی رابطة شیوع بیماری سالک با عناصر اقلیمی در شرق شهرستان اصفهان، مجلةمخاطراتمحیطی، 2(3): 43 ـ 60.

اکبری، ا.؛ میوانه، ف.؛ انتظاری، ع.ر. و نظری، م. (1393). بررسی نقش عوامل زیست‌اقلیمی بر شیوع بیماری سالک در شهرستان سبزوار، مجلة تخصصی اپیدمیولوژیایران، 10(3).

بختیاری، ع.؛ ملکیان، آ. و سلاجقه، ع. (1394). آنالیز همبستگی پایة زمانی و تأخیر زمانی بین خشک‌سالی اقلیمی و خشک‌سالی آب‌شناختی دشت هشتگرد، تحقیقاتآبوخاکایران، 46(4).

جاوری، م. (1380). تغییرات زمانی دما و بارش ایران، رسالة دکتری، دانشگاه تهران‌.

جاوری، م. (1388). شیوههایتجزیهوتحلیلکمیدراقلیمشناسی (باتأکیدبرمدلهایروند)، تهران: پیام‏رسان.

جاوری، م. (1389).شیوههایتجزیهوتحلیلکمیدراقلیمشناسی (باتأکیدبرمدلهایفصلی)، تهران: پیام‏رسان.

خوشدل، ع.ر.؛ نوری‌فر، م.؛ پزشکان، ر. و صلاحی‌مقدم، ع.ر. (1391)‌. نقشه‌سازی بیماری‌های مهم واگیردار ایران، بهداشتوتوسعه، 1(1).

رمضانی، ی.؛ موسوی، غ.ع.؛ بهرامی، ع.؛ فریدونی، م.؛ پارسا، ن. و کاظمی، ب. (1390). بررسی اپیدمیولوژیک بیماری سالک در شهرستان آران و بیدگل طی شش‏ماهة اول سال 1388، فصل‌نامة علمی- پژوهشی فیض، 3: 254 ـ 258.

شهاب گلوی‌زاده، ر.؛ فنی، ع.م.؛ وکیلی، و. و غلامی، ع. (1394). بررسی شیوع بیماری سالک در شهر مشهد، طی بیست سال (1372 ـ 1392) و تأثیر عوامل اقلیمی آب‌وهوایی بر آن، مجلةدانشکدةعلومپزشکیدانشگاهمشهد، 58(9).

شیرزادی، م. (1391). راهنمایمراقبتلیشمانیوزجلدی (سالک) درایران، وزارت بهداشت، درمان و آموزش پزشکی، تهران: راز نهان.

شیوا، ر. (1375)‌. پیشبینیسریهایزمانی،شناسایی،تخمین،وپیشبینی، مؤسسة مطالعات و پژوهش‌های بازرگانی.

عساکره، ح. و شادمان، ح. (1392). کاربرد روش‌های آماری در شناسایی رویدادهای فراگیر اقلیمی، مطالعة موردی: روز‌های گرم فراگیر در ایران‌زمین، اندیشههایجغرافیایی، ش 14.

عزیزی، ق.؛ شمسی‏پور، ع.‏ا. و یاراحمدی، د. (۱۳۸۷). بازیابی تغییر اقلیم در نیمة غربی کشور با استفاده از تحلیل‏های آماری چندمتغیره، پژوهشهایجغرافیایطبیعی، ۶۶: 19 ـ ۳۵.

محقق حضرتی، ص. (1363). بیماری سالک و نقش یکی از عوامل محیطی B.C.G در سیکل زندگی انگل آن، محیطشناسی، 12(12): 151 ـ 186.

محمدی، ح. و جاوری، م. (1384). تحلیل و پیش‌بینی تغییرات تصادفی در ایران، نشریةانجمنجغرافی‌دانانایران، ش 6 ـ 7‌.

مظفری، غ.؛ مهرشانی، د. و بخشی‌زاده کلوچه، ف. (1390). تحلیل نقش عوامل بیوکلیمایی شیوع بیماری سالک در سطح دشت یزد- اردکان، جغرافیاوتوسعه، 23: 185 ـ 202.

Akbari, A.; Mivaneh, F.; Entezari, A.  and Nazari, M. (2014). Survey of bioclimatic factors role on the prevalence of cutaneous leishmaniasis in the city of Sabzevar, Specialized journal of Iran Epidemiology, 10(3) (In Persian).

Arvin, A.; Mozaffari, A. and Bagheri, J. (2013). Journal of Environmental Hazards, 3: 43-60(In Persian).

Asakereh, H. and Shadman, H. (2013). The application of statistical methods to identify the climatic pervasive events, case study: pervasive warm days in Iran, Geographical ideasJournal, 14(In Persian).

Azizi, G.; Shamsipour, A.A. and Yarahmadi, D. (2009). Detection Climate Change using Multivariable Statistical Analysis in west of Iran, Physical geography reasearch ,66: 19-35(In Persian).

Agung, I.G.N. (2014). Panel data analysis using eviews, John Wiley & Sons, Lt.

Bakhtiyari, B; Anayat, M. and Salajegheh, A. (2015). A Correlation analysis of temporal based and time delay between climatic drought and hydrological drought in the Hashtgerd plain, Soil and Water Research of Iran Journal, 46(4) (In Persian).

 

Brockwell, P.J. and Davis, R.A. (2013). Time series: theory and methods: Springer Science & Business Media.

Chaves, L.F. and Pascual, M. (2006). Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease. PLoS Med, 3(8): e295.

Chu, P.-S.; Chen, D.-J. and Lin, P.-L. ((2014. Trends in precipitation extremes during the typhoon season in Taiwan over the last 60 years, Atmospheric Science Letters, 15(1): 37-43.

Cowpertwait, P.S.P.; Xie, G.; Isham, V.; Onof, C. and Walsh, D.C.I. ((2011. A fine-scale point process model of rainfall with dependent pulse depths within cells, Hydrological Sciences Journal, 56(7): 1110-1117.

De Luis, M. et al. (2014(. Trends in seasonal precipitation and temperature in Slovenia during 1951-2007, Reg Environ Change, 14(5): 1801-1810.

Fallah, B.; Sodoudi, S.; Russo, E.; Kirchner, I. and Cubasch, U. (2015). Towards modeling the regional rainfall changes over Iran due to the climate forcing of the past 6000 years, Quaternary International, doi: http://dx.doi.org/10.1016/j.quaint.2015.09.061.

Freeman, K. (2007). This Is How You Do Time Series, Mahobe Resources(NZ)Ltd, from: www/mathscentre/co/nz/html.

Gaglio, G.; Brianti, E.; Napoli, E.; Falsone, L.; Dantas-Torres, F.; Tarallo, V.D. and Giannetto, S. (2014). Effect of night time-intervals, height of traps and lunar phases on sand fly collection in a highly endemic area for canine leishmaniasis, Acta tropica, 133: 73-77.

Gholoyzadieh Shahab, R.; Fani, A.; Vakili, V. and Gholami, A. (2015). Survey of cutaneous leishmaniasis prevalence in Mashhad, Iran, during twenty years (1993- 2013) and its climate impact on cutaneous leishmaniasis, Journal of the Faculty of Medical Sciences, Mashhad University, 58(9) (In Persian).

Henseler, J. and Sarstedt, M. (2013). Goodness-of-fit indices for partial least squares path modeling, Computational Statistics, 28(2): 565-580.

Hlavacova, J.; Votypka, J. and Volf, P. (2013). The effect of temperature on Leishmania (Kinetoplastida: Trypanosomatidae) development in sand flies, Journal of medical entomology, 50(5): 955-958.

Javari, M. (2001). Temporal changes in temperature and precipitation in Iran, Ph.D. Thesis, Tehran University (In Persian).

Javari, M. (2010). Quantitative Methods in Climatology (Trend Models), Payam Resan Press, 30-70(In Persian).

Javari, M. (2015). A Study of Impacts of Temperature Components on Precipitation in Iran Using SEM-PLS-GIS, Earth Science & Climatic Change, 4: 1-14.

Kendall, M.G. (1975).Rank Correlation Methods: Charles Griffin and Co. Ltd., London, U.K.

Kessler, R.C. (2014). Linear panel analysis: Models of quantitative change: Elsevier.

Khoshdel, A.; Norifar, M.; Pezeshgan, R. and Salahimoghadam, A. (2012). Mapping the major contagious diseases in Iran, Health and Development Journal, 1(1) (In Persian).

Kovats, R. and Tirado, C. (2006). Climate, weather and enteric disease, Climate change and adaptation strategies for human health, 269-295.

Linde, P. (2005). Seasonal Adjustment, https://www.dst.dk.Statistics Denmark.

Machiwal, D. and Jha, M.K. (2012). Hydrologic Time Series Analysis: Theory and Practice, Springer, New York , USA.

Magill, A.J.; Grogl, M.; Gasser Jr, R.A.; Sun, W. and Oster, C.N (1993). Visceral infection caused by Leishmania tropica in veterans of Operation Desert Storm, New England Journal of Medicine, 328(19): 1383-1387.

Mann, H.B. (1945). Non-parametric tests against trend, Econometrica, Vol. 13.

Mirahmadi, A.; Rafiei, F.M. and Khashei, M. (2015). Seasonal Interval Time Series Models in Comparative Study of Industrial Forecasting

Mohaghegh Hazrati, S. (1984). Leishmaniasis disease and the role of environmental factors in the life cycle of the parasite that BCG, Journal of Environmetal Studies, 12(12): 151-186(In Persian).

Mozafari, GH; Mehrshahi, D. and Bazhsi, F. (2011). Role Analysis of bioclimatic factors the Cutaneous leishmaniasis outbreak in the Yazd plain Ardekan, Geography and Development Iranian Journal, 9(24): 185-202 (In Persian).

Nasri, M. and Modarres, R. (2009). Dry spell trend analysis of Isfahan Province, Iran, International journal of climatology, 29(10): 1430-1438.

Parvizi, P.; Akhoundi, M. and Mirzaei, H. (2012). Distribution, fauna and seasonal variation of sandflies, simultaneous detection of nuclear internal transcribed spacer ribosomal DNA gene of Leishmania major in Rhombomys opimus and Phlebotomus papatasi, in Natanz District in Central Part of Iran, Iranian biomedical journal, 16(2): 113.

Pearson, D.; Cox, P.M.; Booth, B.B.; Friedlingstein, P.; Huntingford, C.; Jones, C.D. and Luke, C.M. (2013). Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability, Nature, 494(7437): 341-344.

Pearson, R.; Queiroz Sousa, A.D.; Mandell, G.; Douglas Jr, R. and Bennett, J. (1990). Leishmania species: visceral (kala-azar), cutaneous, and mucosal leishmaniasis, Principlesand practice of infectious diseases., 2066-2077.

Ramezani, Y.; Mousavi, S.G.A.; Bahrami, A.; Fereydooni, M.; Parsa, N. and Kazemi, B. (2011). Epidemiological study of cutaneous leishmaniasis in Aran and Bidgol from April to September 2009, Feyz Journals of Kashan University of Medical Sciences, 15(3): 254-258(In Persian).

Renner, I.W. et al. ((2015. Point process models for presence-only analysis, Methods Ecol. Evol., 6(4): 366-39.

Sherzadi, M. (2012). Care Guide cutaneous leishmaniasis Leishmaniasis in Iran, Ministry of Health and Medical Education, Tehran, Nahanraz(In Persian).

Shiva, R. (1996). Time series prediction, identification, estimation, and forecasting, Studies Institute and Trade Research (In Persian).

Shirvani, A. (2015). Change point analysis of mean annual air temperature in Iran, Atmospheric Research, 160: 91-98. doi: http://dx.doi.org/10.1016/j.atmosres.2015.03.007.

Snedecor, G.W.C (1946). Statistical Methods Statistical Methods: The Iowa State University Press, Ames, Iowa, USA.

Tabari, H.; AghaKouchak, A. and Willems, P. (2014). A perturbation approach for assessing trends in precipitation extremes across Iran. Journal of Hydrology, 519, Part B, 1420-1427. doi: http://dx.doi.org/10.1016/j.jhydrol.2014.09.019

Tabari, H. and Hosseinzadeh Talaee, P. (2013). Moisture index for Iran: Spatial and temporal analyses, Global and Planetary Change, 100: 11-19. doi: http://dx.doi.org/10.1016/j.gloplacha.2012.08.010.

Tabari, H.; Hosseinzadeh Talaee, P.; Ezani, A. and Shifteh Some’e, B. (2012). Shift changes and monotonic trends in autocorrelated temperature series over Iran, Theoretical and Applied Climatology, 109(1): 95-108. doi: 10.1007/s00704-011-0568-8.

Tabari, H.; Somee, B.S. and Zadeh, M.R. (2011). Testing for long-term trends in climatic variables in Iran, Atmospheric Research, 100(1): 132-140. doi: http://dx.doi.org/10.1016/j.atmosres.2011.01.005.

Term, H. (2010). Time Series, stats.ox.ac.uk. http://www.stats.ox.ac.uk/~reinert.

Willems, P. ((2001. A spatial rainfall generator for small spatial scales, Journal of Hydrology, 252(1):126-144.

Woody, J. (2015). Time series regression with persistent level shifts, Stat Probab Lett, 102(0):22-29.

Yaghoobi-Ershadi, M. and Javadian, E. (1996). Epidemiological study of reservoir hosts in an endemic area of zoonotic cutaneous leishmaniasis in Iran, Bulletin of the World Health Organization, 74(6): 587.

Zhang, Y. (2007). The relationship between climate variation and selected infectious diseases: Australian and Chinese perspectives.