تکامل لندفرم‌های اواخر کواترنری در پاسخ به تغییرات تکتونیکی فعال سطح اساس در منطقۀ طبس، ایران مرکزی

نوع مقاله : مقاله کامل

نویسندگان

1 استادیار گروه جغرافیای طبیعی، دانشکدة جغرافیا، دانشگاه تهران

2 استادیار گروه جغرافیا، دانشگاه ارومیه

چکیده

در این پژوهش به بررسی شواهد و آثار زمین‏ساخت فعال در اطراف کویر طبس پرداخته شده است. برای تحلیل‏های کمّی لندفرم‏ها از تصاویر سنتینل و نقشه‏های زمین‏شناسی استفاده شده است. ژئومورفومتری رقومی‌ـ شامل اندازه‏گیری میزان جابه‏جایی و بالاآمدگی رسوبات و کانال‏ها، تحلیل نیمرخ‏های عرضی و طولی چشم‏اندازها، و ارتباط آن‏ها با داده‏های لرزه‏ای‌ـ اساس کار بوده است. نتایج پژوهش نشان‏دهندة فعالیت‏های شدید تکتونیکی طی کواترنری تا زمان حاضر در منطقه است. مقایسة الگوی تغییرشکل لندفرم‏های کواترنری پهنة پژوهش از قبیل مخروط‏افکنه‏ها، مسیل‏ها و زهکش‏ها، پرتگاه‏های گسلی، و چین‏ه ای فعال با شکل نیمرخ عمقی کانون‏های زمین‏لرزه‏ها بیانگر وجود سیستم گسلی معکوس مدفون در حد فاصل کوهستان شتری- پلایای طبس در منطقه هستند. فعالیت این سیستم‏ گسلی فعال، علاوه‏بر جابه‏جایی مسیل‏ها، چین‏خوردگی رسوبات کواترنر، رشد چین‏ها، ایجاد پرتگاه‏ها، تقطیع مخروط‏افکنه‏ها، و پیدایش درّه‏های بسیار عمیق کانیونی، موجب مهاجرت تحمیلی مخروط‏افکنه‏ها از جبهة کوهستان به طرف پلایای طبس (از قدیم به جدید) شده است. تداوم چنین تغییرشکل‏هایی به میزان بالا را می‌توان عامل اصلی تشکیل حوزة تنشی و توسعه و گسترش شکستگی‏ها و در نتیجه علت اصلی ایجاد زمین‏لرزه‏هایی با بزرگای بالا دانست که احتمال وقوع آن‏ها در آینده دور از انتظار نیست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Late-Quaternary Landscape Evolution in Response to Active Tectonic Changes in Base-Level, Tabas Region, Central Iran

نویسندگان [English]

  • Abolghasem Goorabi 1
  • Vahid Mohammadnejad 2
1 Assistant Professor of Geomorphology, Faculty of Geography, University of Tehran, Iran
2 Assistant professor of geography, Faculty of Geography, University of Oromeyeh, Iran
چکیده [English]

Introduction
The Tabas zone in the central Iran hosts a series of active landforms, which developed during the late Quaternary. Evolution of these landforms has been controlled by many active faulting and folding systems that have developed since Quaternary. Iran forms a relatively compact zone of active continental deformation resulted from the northward collision of Arabian plate with Eurasia plate during late Cenozoic times, which continues to the present‐day at a rate of 25 mm/yrs based on GPS data. The evidence of active tectonic in different parts of Iran has been studied by many researchers. The arid climate, low rates of erosion, and minimal vegetation cover across the majority of the country result in excellent preservation and exposure of surface deformation produced by active faults. Geomorphic indices are useful tools in the evaluation of active tectonics because they can provide rapid insight concerning specific areas within a region which is undergoing adjustment to relatively rapid and even slow rates of active tectonics. Alluvial fans are one of the most important landforms that indicate active tectonics and active faults. When a river reaches from high gradient mountains to low gradient plain, aggradations is occurred and alluvial fans are created. At least, five factors influence fan processes including catchment bedrock lithology, catchment shape, neighboring environments, climate, and tectonics.  Active tectonics has a very important role in deformations of the alluvial fans.  Without continued tectonics, fans and other quaternary landforms might become minor or short-lived features. In this study, we try to investigate the impacts of the active faults in quaternary landforms and morphometry of alluvial fans and morphology in the Tabas playa.
Method and materials
An integrated multidisciplinary approach was adopted to better constrain the morphotectonic evolution of Tabas region and to reconstruct its Late-Quaternary landscape evolution. The procedure is based on the obtained qualitative and quantitative data. The quantitative data includes satellite image interpretation and digital elevation models, alluvial fan and folds morphometry, channel displacement and rate of sediment uplift. The analysis of longitudinal and cross profile and gradient variable are used to interpret the active fault effects on folding and alluvial fans. Topography maps (1:25000), Sentinel 2 and Quickbird satellite image with 10 and less than 3 m spatial resolution, geology maps (1:100000) and digital elevation models (10m pixel resolution) were employed in this study. For such interpretation, we have employed ArcGIS, ENVI and Freehand software.
Results and discussion
Tabas area is characterized by active faults and folds. The strike-slip faults are the dominant structures in the study area. However, the reverse faults are the most important for the landscape, because they form canyons and affect the drainage pattern. The study of satellite imagery and geological maps of the area, especially in the west part of the Shotori Mountains, reveals large and numerous alluvial fans, sometimes created to the desert along the lower sections, developed and expanded by the sedimentation of seasonal and permanent rivers. These alluvial fans are joined together in most parts of southern Tabas. According to the criteria for the differentiation of alluvial fans from each other, three types of old, active and midway are identified at the confluence of the Tabas playa and Shotori Mountains.
There are several new folds in quaternary sediments between Shotori Mountains and Tabas Playa. One of them is Tabas (or Sardar) fold in north part of Tabs city. This fold can be seen among the old alluvial fans hardly excavated by Tabas and Sardar Rivers. Sardar River makes a deep gorgeous canyon through this fold. Other folds are Fahlanj and Fosh that take place in south part of Tabas city and the latter located in north east of Tabas.
The faults are important tectonic elements in the creation of various early landforms such as horst, graben, thrust, etc. in the study area that are along the Nayband fault system with a N-S direction. In the east part of the village of Estahpak, an active strike-slip fault series displaces sandstone and conglomerate sediments of Miocene up to 130 meters. Estahpak fault and its lateral branches in some cases are displaced by the Quaternary sedimentary layers, more than330 meters. In Fosha fold, there is a strike slip displacement of Quaternary sediments, about 350 meters. Stream and rivers are so sensitive to tectonic so that they quickly response to tectonic activities.  Estahpak strike-slip fault result in displacement of streams up to 390 meters.
According to seismic data from the US Geological Survey, from 1973 to 2016, about 60 earthquakes ranged from 4.5 to 7.4 in magnitudes has been occurred in the region. Meanwhile, the average depth of earthquakes is at an approximate depth of 31 km, as the earthquake centers between depths of 58 - 2 km. The earthquake centers are mainly concentrated in the beginning of the mountain front and immediately after the occurrence of roughness. In 1979, the Tabas earthquake created a fracture with a length of 80 Km along the Tabas fault and killed more than 25000 people.
Conclusion
The tectonic landforms of the Tabas region are consisted of the faults, folds, segmented alluvial fans and diverted gullies. In addition, elevated anticlines indicate young tectonic movements and their planform outlines are affected by faults. From the morphology and the outcrops, we conclude that the Tabas region contains many active strike-slip faults, arranged presumably en-echelon. Secondary features are reverse faults and folds. The age of the associated basins shows that this tectonic system has been active since late Quaternary. Recent faulting activity is inferred from earthquake activity and the morphology changes with young fault scarps. The findings show that Tabas, Shotori, Baharestan, Feyzabad and Darya faults were active in quaternary epoch. The position and forms of alluvial fans and river channel and folds are affected by the activities of these faults. These faults have had either lateral or vertical displacements. Findings also show that the alluvial fan formed their longitudinal and lateral profiles are affected by Tabas, Darya and Shotori faults. Investigations show that there is no statistical correlation between the variables affecting the alluvial fans. Generally, tectonic activities disrupt natural evolution of alluvial fans. Each fault has a different effect on alluvial fan evolution. Shotori and Tabas fault caused the displacement of the main channel and the formation of river terraces. Therefore, it has also increased slope of this part. Other faults have caused uplift of fan deposits and changed the intersection point and reconstruction of new alluvial fans in the lower part of this point.

کلیدواژه‌ها [English]

  • Tabas
  • active tectonics
  • Central Iran
  • Quaternary landforms
آقانباتی، ع. (1377). چینه‏شناسی ژوراسیک ایران، ج 1، سازمان زمین‏شناسی ایران.
ادیب.، ا. (۱۳۸۲). زمین‏ساخت فعال و پتانسیل خطر زمین‏لرزه در ناحیة طبس، فصل‏نامة علمی- پژوهشی زمین‏شناسی و محیط زیست، 3: 27-45.
اسماعیلی، رضا؛ حسین‌زاده، م.م. و متولی، ص. (1391). بررسی اثرات مورفوتکتونیک در نیمرخ طولی رودخانه واز؛ البرز شمالی، استان مازندران، مجلۀ پژوهش‏های ژئومورفولوژی کمی، 3: 101ـ 114.
آقانباتی، ع. (1379).مطالعة زمین‏شناسی ناحیة کلمرد (غرب طبس)، سازمان زمین‏شناسی ایران، گزارش شمارة 350، ص 230.
  جباری، ندا.؛ ثروتی، م. و حسین زاده، م.م. (1391). مطالعه‎ مورفوتکتونیک فعّال حوضۀ آبخیز حصارک (شمال‎غرب تهران) با استفاده از شاخص‎های مورفومتریک، مجلۀ پژوهش‏های ژئومورفولوژی کمی، 2: 17ـ 34.
رحبی، م.؛ کرمی، ف. و عسگری، م. (1392). تحلیل فعالیت‌های نئوتکتونیکی دامنۀ شمالی رشته کوه بزقوش با استفاده از روش‌های ژئومورفولوژیکی، فصلنامۀ تحقیقات جغرافیایی، (109)، 141-158.
رحیم زاده، ز.؛ علایی طالقانی، م و رضاپور، ع. (1393). ارزیابی کمی فعالیت های نئوتکتونیک با تکیه بر شواهد ژئومرفیکی در حوضۀ ریجاب، فصلنامۀ تحقیقات جغرافیایی، (113)، 211-224.
رضایی مقدم، م.ح.؛ خیری‏زاده آروق، م. و سرافروزه، ف. (1392). ارزیابی تکتونیک فعال در دامنۀ جنوبی میشو داغ، مجلۀ پژوهش‏های ژئومورفولوژی کمی، 2: 141ـ 158.
عزتی، م. و آق‏آتابای، م. (13921393). تحلیل زمین‏ساخت فعال حوضۀ بجنورد با کمک شاخص‏های مورفوتکتونیکی، پژوهش‏های ژئومورفولوژی کمی، 4: 130ـ144.
گورابی، ا. و امامی، ک. (1396). تأثیرات نوزمین‏ساخت بر تغییرات مورفولوژیک حوضه‏های زهکشی سواحل مکران، جنوب شرق ایران، پژوهش‏های ژئومورفولوژی کمی، 1(6): 74ـ 89.
گورابی، ا. و پاریزی، ا. (1395). تأثیرات نوزمین‏ساخت بر تغییرات مورفولوژیک حوضه‏های زهکشی سواحل مکران، جنوب شرق ایران، پژوهش‏های ژئومورفولوژی کمی، 4(2): 45ـ59.
گورابی، ا. و کریمی، م. (۱۳۹۱). تأثیر تکتونیک فعال و تغییرات اقلیمی در تحول مخروط‏افکنة مروست، ایران مرکزی، نشریة تحقیقات کاربردی علوم جغرافیایی، 27: 7ـ29.
محمدنژاد، و. (1395). گسل‏های فعال و تأثیر آن‏ها بر تغییر شکل لندفرم‏های کواترنر شمال شرق دریاچة ارومیه، ایران، پژوهش‏های جغرافیای طبیعی، 48(1): 83-106.
محمدنژاد، و. و اصغری، ص. (1394). واکنش مخروط‏افکنه‏های شرق گرمسار بر جابه‏جایی عمودی و امتدادی گسل‏ها (با تأکید بر مخروط‏افکنه ده‏نمک)، پژوهش‏های ژئومورفولوژی کمی، 4(2): 1-17.
نواب‏پور، پ.؛ سعیدی، ع. و قاسمی، م. (۱۳۸۲). زمین‏ساخت پویای باختر کوهستان شتری، مجلة علوم زمین، (50): 2-13.
یمانی، م.؛ قاسمی، م.؛ علوی‏پناه، ک. و گورابی، ا. (1389). مورفوتکتونیک ناحیة دهشیر با استفاده از تکنیک‏های ژئومورفومتری، پژوهش‏های جغرافیای طبیعی، (71): 1ـ20.
یمانی، م.؛ مقصودی، م.؛ قاسمی، م. و محمدنژاد، و. (1391). شواهد مورفولوژیکی و مورفومتریکی تأثیر تکتونیک فعال بر مخروط‏افکنه‏های شمال دامغان، پژوهش‏های جغرافیای طبیعی، 44(2): 1-18.
Adib, A. (2009). Active Tectonic and Earthquake Risk Potential in Tabas Region, Scientific Journal of Management System, 3: 17-34.
Agha Nabati, A. (1998). Jurassic Stratigraphy of Iran, Vol1. Geological Survey of Iran.
Agha Nabati, A. (2000). Geological Survey of Kalmard District (West of Tabas) Geological Survey of Iran, Report no 350, pp. 230.
Allen, M.; Jackson, J. and Walker, R. (2004). Late Cenozoic reorganization of the Arabia- Eurasia collision and the comparison of short-term and long-term deformation rates, Tectonics, 23.
Ambraseys, N.N.; Melville, C.P. (1982). A History of Persian Earthquakes. Cambridge University Press, UK.
Berberian, M. (1979). Earthquake faulting and bedding thrust associated with the Tabas-e-Golshan (Iran) earthquake of September 16, 1978, Bull. Seism. Soc. Am., 69: 1861-1887.
Bilham, R. (2004). Earthquakes in India and the Himalaya: Tectonics, geodesy and history, Ann. Geophys. J. Int., 47: 839–858.
Bull, W.B. (2009), Tectonically Active Landscape, John Wiley & Sons.
Burbank, D.W. and Anderson, R.S. (2001). Tectonic Geomorphology, Blackwell Science.
Camp, V.E. and Griffis, R.J. (1982). Character genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran, Lithos, 3: 221-239.
DeMets, C.; Gordon, R.G.; Argus, D.F.; Stein, S. (1990). Current plate motions, Geophys. J. Int., 101: 425–478.
Esmaeili, R. Hoseinzade, M, M, and Motavalli, S. (2012). Investigation impact of morphotectonics on Longitudinal profile of Vaz river, north Alborz, Mazandaran provience, Quantitative Geomorphological Researches, 3: 101-114.
Ezati, M. and Aghatabi, M. (2013). Analyze of active tectonic in Bojnord basin using morphotectonic indexes, Quantitative Geomorphological Researches, 4: 130-144.
Fattahi, M. (2006). Holocene slip-rate on the Sabzevar thrust fault, NE Iran, determined using optically stimulated luminescence (OSL), Earth and Planetary Science Letters, pp. 20-34.
Goorabi, A. and Emame, K.  (2017). Neotectonics Influences on Morphological Variations of Makran Costal Basins, SE Iran, Quantitative Geomorphological Researches, 1: 74-89.
Goorabi, A. and Karimi, M. (2013). Impact of active tectonics and climate change on Marvast alluvial fan central Iran, Journal of Applied researches in Geographical Sciences, 27: 7-30.
Goorabi, A. and Parize, A. (2015). The influence of tectonic on landforms evolution, southwestern slopes of Shirkooh, Quantitative Geomorphological Researches, 2: 45-59.
GourabiGoorabi, A. and Yamani, M. (2001). Active Faulting and Quaternary Landforms Deformation Related to the Nain Fault, American Journal of Environmental Sciences, 7(5): 441-447.
Hollingsworth, J. (2010). Active tectonics of the east Alborz Mountains, NE Iran: Rupture of the left‐lateral Astaneh fault system during the great 856 A.D. Qumis earthquake, Journal of Geophysical Research, Vol. 115.
Jabbari, N, Servati, M and Hoseinzade, M, M. (2012). Study of active morphotectonics of Hesarak basin (north-west of Tehran), Quantitative Geomorphological Researches, 2: 17-34. 
Jackson, J. and McKenzie, D. (1984). Active tectonics of the Alpine–Himalayan belt between Turkey and Pakistan, Geophysical Journal of the Royal Astronomical Society, 77: 185-264.
Keller, E.A. and Pinter, N. (2002). Active Tectonics: Earthquakes, Uplift, and Landscape, Prentice Hall Earth Science Series, 2nd edition. Prentice Hall Inc., Upper Saddle River, New Jersey.
Masson, F.; Anvari, M.; Djamour, Y.; Walpersdorf, A.; Tavakoli, F.; Daigni`eres, M.; Nankali, H.; van Gorp, S. (2007). Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran, Geophys. J. Int., 170: 436–440.
McClusky, S.; Reilinger, R.; Mahmoud, S.; Ben Sari, D.; Tealeb, A. (2003). GPS constraints on Africa (Nubia) and Arabia plate motions, Geophys. J. Int., 155:126–138.
Meyer, B. and Le Dortz, K. (2007). Strike–slip kinematics in Central and Eastern Iran: estimating fault slip-rates averaged over the Holocene. Tectonics 26, TC5009. http://dx.doi.org/10.1029/2006TC002073.
Mohammadnejad, V. (2016). Active faulting and its effects on Quaternary landforms deformation in north-east of Lake Urmia, Iran, Physical Geography Research Quarterly, 1: 83-106.
Mohammadnejad, V. and Asghari, S. (2015). Response of Garmsar east alluvial fans on horizontal and vertical displacement of faults (With emphasis on DehNamak fan), Quantitative Geomorphological Researches, 2: 1-17.
Navvabpor, P. Navvabpor, P.; Saeidi, A. and Ghasemi, M. (2003). Active tectonics of west of shotori mountains, Geoscience, 50: 2-13.
Nazari, H.; Ritz, J.F.; Shafei, A.; Ghassemi, A.; Salamati, R.; Michelot, J.L. and Massault, M. (2009). Morphological and paleoseismological analyse of the Taleghan fault, Alborz, Iran, Geophys. J. Int., 178: 1028-1041.
Parsons, A. (2009). Geomorphology of Desert Environments, Springer Science+Business Media, London.
Rahimzade, Z, Alaeitaleghani, M and Rezapor, A. (2014). Quantitive analyzing of neotectonic activity in Rijab basin with emphasis on geomorphic evidences. Geographic researches, 113: 211-224  
Rajabi, M, Karami, F and Asgari, M. (2013). Analyzing of active tectonic in Bozghosh north hills using geomorphological methods. Geographic researches, 109: 141-158 
Ramirez- Herrera, M.T. (1998). Geomorphic assessment of active tectonics in the Acambay graben, Mexican Volcanic belt. Earth Surface Processes and Landforms, 23: 317-322.
Ramsey, L.A.; Walker, R.T. and Jackson, J. (2008). Fold evolution and drainage development in the Zagros Mountains of Fars Province, SE Iran. Basin Research, 20: 23-48.
Regard, V. et al. (2005). Cumulative right-lateral fault slip rate across the Zagros-Makran transfer zone: role of the Minab-Zendan fault system in accommodating Arabia-Eurasia convergence in southeast Iran, Geophys. J. Int., 162(1): 177-203.
Rezaei Moghadam, M.H.; Khairizadeh, A.M. and Sarafroozeh, S. (2014). Assessment of active tectonics in the southern part of Mishoodagh, Quantitative Geomorphological Researches, 3: 141-158.
Ribolini, A. and Spagnolo, M. (2008). Drainage network geometry versus tectonics in the Argentera Massif (French–Italian Alps), Geomorphology, 93: 253-266, Available online at www.sciencedirect.com.
Rizza, M.; Mahan, S.; Ritz, J.F.; Nazari, H.; Hollingsworth, J. and Salamati, R. (2011). Using luminescence dating of coarse matrix material to estimate the slip rate of the Astaneh fault, Iran, Quaternary Geochronology.
Ruttner, A.; Nabavi, M.H. and Hajian, J. (1968). Geology of the Shirgesht area (Tabas area; east iran), Geol. Surve. Iran 4.
Sella, G.F.; Dixon, T.H.; Mao, A. (2002). REVEL: A model for recent plate velocities from space geodesy, J. geophys. Res., 107(B4): ETG 11-1, 11-32.
Stöcklin, J.; Eftekhar-Nezhad, J. and Hushmand-zadeh, A. (1965). Geology of the Shotori Range (Tabas area, East Iran), Geological survey of Iran, Report No. 3.
Vernant, P. et al. (2004a). Deciphering oblique shortening of central Alborz in Iran using geodetic data, Earth planet. Sci. Lett., 223: 177-185.
Vernant, P.; Nilforoshan, F.; Hatzfeld, D.; Abbassi, M.R.; Vigny, C. and Masson, D. (2004b). Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman, Geophysical Journal International, 157(1): 381-398.
Vernant, PH.; Nilforoushan, F.; Hatzfeld, D.; Abbassi, M.R.; Vigny, C.; Masson, F.; Nankali, H.; Martinod, J.; Ashtiani, A.; Bayer, R.; Tavakoli, F. and Chery, J. (2004c). Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman, Geophysical Journal International, 157: 381-398.
Walker, R. and Jackson, J. (2002). Offset and evolution of the Gowk Fault, S.E. Iran: a major intra-continental strike–slip system, Journal of Structural Geology, 24: 1677-1698.
Walker, R.; Jackson, J. and Baker, C. (2003). Surface expression of thrust faulting in eastern Iran: source parameters and surface deformation of the 1978 Tabas and 1968 Ferdows earthquake sequences, Geophysics. J. Int, 152: 749-765.
Walker, R.T.; Gans, P.; Allen, M.B.; Jackson, J.; Khatib, M.; Marsh, N. and Zarrinkoub, M. (2009). Late Cenozoic volcanism and rates of active faulting in eastern Iran, Geophysical Journal International, 177: 783-805.
Walker, R.T.; Khatib, M.M.; Bahroudi, A.; Rodés, A.; Schnabel, C.; Fattahi, M.; Talebian, M.; Bergman, E. (2015). Co-seismic, geomorphic, and geologic fold growth associated with the1978 Tabas-e-Golshan earthquake fault in eastern Iran, Geomorphology, 237: 98-118.
Walker, RT.; Talebian, M.; Sloan, R.A.; Rasheedi, A.; Fattahi, M. and Bryant, C. (2010). Holocene slip-rate on the Gowk strike–slip fault and implications for the distribution of tectonic strain in eastern Iran, Geophysical Journal International, 181: 221-228.
Yamani, M.; Ghasemmi, M.R.; Alavi Panah, S.K and Goorabi, A. (2010). Morphotectonic of Dehshir Area Using Geomorphometric Techniques, Physical Geography Research Quarterly, 71: 1-20.