ارزیابی اثرات تغییر اقلیم بر منابع آب سطحی تجدیدپذیر سی حوضة آبریز کشور

نوع مقاله : مقاله کامل

نویسنده

استادیار دانشگاه پیام نور، تهران، ایران، گروه آموزشی جغرافیا

چکیده

در سال​های اخیر مقادیر بارندگی و جریان‏های سطحی سی حوضة آبریز ایران نسبت به نیم قرن گذشته به شدت کاهش یافته است. در این پژوهش حوضه‏های مذکور به‏عنوان‏ مطالعة موردی انتخاب شده و هدف از اجرای آن ارزیابی اثرهای احتمالی تغییر اقلیم در بارندگی و منابع آب سطحی تجدیدپذیر است‏. برای بررسی این موضوع، مقادیر بارندگی و آبدهی اندازه‏گیری‏شدة این حوضه‏ها از سال 1347 تا 1397 در سه دورة آماری از 1347-1397، 1347-1377، و 1377-1397 طبقه‏بندی شد. سرانجام، با آزمون‏های آماری t استیودنت، من​- ویتنی، من- کندال گرافیکی روند تغییرپذیری داده‏ها در سطح اطمینان 95درصد و 99درصد با SPSS محاسبه شد. به موجب نتایج این پژوهش، معلوم شد روند بارندگی بلندمدت همة حوضه‏ها منفی بوده و میانگین حجم جریان‏های سطحی تجدیدپذیر بیست سال اخیر نسبت به میانگین پنجاه سال بین 13- تا 61- درصد کاهش یافته و آمارة  U(ti)   همة آن‏ها منفی است. به‏نظر می‏رسد علت آن تغییر اقلیم است‏. به‏عنوان‏ مثال، آمارة U(ti)  بارش‏ها در حوضة کارون 2.77-، مارون جراحی 2.18-، در کرخه 1.98-، غرب ایران 1.78-، و قره‏سو- گرگان 2.70+ است‏. در مقایسه با آن آمارة U(ti)  آبدهی آن‏ها به‏ترتیب 3.35-، 3.07-، 4.51-، 2.87-، و 3.29- است‏.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of Climate Change Effects on Renewable Surface Water Resources due to 30 Basins in IRIR.

نویسنده [English]

  • Ali Sourinejad
Assistant Professor, Department of Geography, Payam Noor University- Shahryar
چکیده [English]

Extended Abstract
Assessment of Climate Change Effects on Renewable Surface Water Resources due to 30 Basins in IRIR.

Introduction:
Climate change as one of the most important environmental hazards around the world has led to the emergence of the worst climatic conditions, such as: heat waves, changes in the temporal and spatial distribution of atmospheric dispersal patterns (heavy rainfalls), prolonged periods of droughts, severe floods, severe storms , Dust particles, etc., and has, in recent years, left unhealthy effects on the hydrological cycle and renewable water sources (IPCC, 2016).
According to the IPCC, the global average temperature in 2016 is about 1.3 degrees Celsius more than the recent 100 years because of uprising the greenhouse gas emissions (IPCC 2017). In Iran, during the period from 1970 to 2004, the average annual temperature ranged from 1 to 2 degrees Celsius (IPCC 2014).
Currently, due to rising temperatures and reduced rainfall in recent years, fresh water resources have fallen across the Iranian catchment areas and in some places have led to the drying rivers. In this way, the annual and balance of water supply's with the amount of renewable water has been interacted and has led to increased demand for agricultural, drinking and industrial water in this paper. To query this, 30 watersheds throughout Iran have been selected as a case study with the aiming to assessing the potential impacts of climate change on renewable water sources.

Materials and methods:
In this case study, using the data of 2113 meteorological and 1116 hydrometric stations of the Ministry of Energy and the Meteorological Organization, the values of the time series of rainfall data and the annual volume flow of all rivers in 30 catchments were selected using Excel software from 1968 to 2018. Subsequently, rainfall and runoff data were classified into three statistical periods of 50, 30 and 20 years (respectively from 1968 to 2018, 1968 to 1997, and 1998 to 2018). Finally, using parametric statistical tests T-test and non-parametric Mann-Whitney and Man-Kendall mutation variability in the time series of these periods, at 95% confidence level and 99% confidence level, SPSS software was evaluated and verified.

Results and discussion:
In this research, the results of parametric and nonparametric statistical tests to reveal the mutation and verification of the trend in the long-term variations of rainfall data and annual flow volume of all rivers in 30 catchments are presented in Table 1. In this case study.








Table (1) Statistical values of T-Student, Mann-Whitney and Mann-Kendall tests of rainfall (R) and surface flow (SF) 30 of catchment area Iran.



In this table, the results of T-Student and Mann-Whitney tests at 95% and 99% confidence levels show that significant leakage has occurred in the catchment area of Lake Uremia in reducing rainfall and annual river flow volumes, as well as in basins there is also a significant mutation in rainfall in decreasing and increasing order, respectively. In the other basins of Aras, Tallesh-Anzali, Lahijan-Noor, Harraz-Neka and Atrak, although the Z (R) statistics of the Mann-Whitney test show a negative trend, but Z (R) precipitation is not significant and not confirmed, In comparison with rainfall, annual volume fluxes in these basins are more intrusive and Z (SF) is significant, which is confirmed by the mutation.
According to the results of these tests, across the catchment areas of Hamoun, Serakhs, West Frontier, Karkheh, Dez-Karoun, Maroun Jarrahi and Zohreh, Kol-Mehran and Southern Coastlands, Bandar Abbas-Sedich, Salt Lake, Gavkhoni, Tashk-Bakhtegan, MeHarlow, Siah-kuh and Rigzarin also have a significant mutation in reducing the rainfall and annual volume flow rates, so the Z (R) and Z (SF) statistics of the Man-Whitney test in these basins Is negative and the result of the mutation is confirmed, if the T (R) and T (SF) statistics obtained from the T-test are positive for all of them.
The results of my Kendall test's revelation in Table 1 show that in most of the country's catchment areas from 1968 to 2018, although the process of rainfall variability is more strongly negative, but their U(ti) R statistics are significant be. Therefore, this phenomenon can be related to the possible impacts of climate change. For example, the minimum U(ti) R statistics in the Dez-Karoun basins is -2.81, Maroun Jarrahi -2.18, Karkheh -1.98 and in the western border region is -1.78, with a significant negative trend And the maximum U(ti) R in the Gherahso-Gorgan basin was + 2.70 with a positive and significant trend. In the case of U(ti) SF, the volume of surface Flow of these basins is -3.35, -2.87, -3.07, -4.51 and -3.29, respectively, and has a decreasing and meaningful trend.
Also, according to the results of this test, it can be seen that in all the country's catchment areas, the variability of rainfall and annual volume flows from 1968 to 1997 (the first statistical period selected for 30 years) compared to the time series from 1968 to 2018 (For 50 years), the U(ti) R and U(ti) SF statistic were 95% and 99% confidence levels less than ± 1.96 and ± 2.58, respectively, and were not significant Be These conditions also apply to the rainfall from 1998 to 2018 (the second period of statistical selection). The trend of fluctuation of surface Flow from 1998 to 2018 (for 20 years) has had a relatively moderate decrease compared to the last 50 years, but their U(ti) SF is significant, therefore, the effect of droughts Climate and excessive perceptions for agriculture, drinking and industry in the last decade, which has greatly diminished as a result of river flows.

Conclusion :
Assessing the results of the T- Student and Mann-Whitney tests in this study showed that from 1968 to 2018, rainfall and annual flow volumes of all catchment areas across the country had a relatively slow downward trend. Also, according to the results of the Man-Kendall test in the catchments of Dez-Karoun, Karkheh, West border, Lake Uremia, Central plateau, Hamoun and Serakhs, the trend of long-term variability of atmospheric precipitation (except for the Gherahso-Gorgan basin) has been very low. Since From 1998 to 2018 annual precipitation values have declined over the past half century, but U(ti)R are meaningful and, therefore, can be attributed to the certainty of the trend of rainfall variability to the phenomenon of climate change.
What is certain is that the process of variation of surface flow volume in comparison with annual rainfall has very large fluctuations and has a decreasing intensity several times. It seems that rainfall reduction is the cause of the rivers discharge volume, but other factors such as Excessive harvesting in the upper reaches of the catchment areas has always been effective for the use of various sectors, so according to U(ti) SF, they can be attributed to the climatic phenomenon as the definitive causes, therefore, according to the results of my Kendall test The effect of climate change on the reduction of annual yield and the volume of surface Flow of rivers are skeptical.
Keywords: Climate Change, Precipitation, Man-Kendall, Renewable Water Resources.

کلیدواژه‌ها [English]

  • Climate Change
  • Precipitation
  • Man-Kendall
  • Renewable Water Resources
آل یاسین، ا. (1384). بحران آب، تهران: جامعة مهندسان مشاور ایران.
ابراهیمی، ه. و کردوانی، پ. (1393). مطالعة تغییر اقلیم در تالاب بین‏المللی انزلی به روش من‏- کندال، فصل‏نامة علمی‏- پژوهشی اکوبیولوژی تالاب، دانشگاه آزاد اسلامی واحد اهواز، ۶(۱۲): 59-72.
جهان‏بخش اصل، س.؛ خورشیددوست، ع.؛ دین‏پژوه، ی. و سرافروزه، ف. (1393). تحلیل روند و تخمین دوره‏های بازگشت دما و بارش‏های حدی در تبریز، فصل‏نامة جغرافیا و برنامه‏ریزی،  18(۵۰): 107-133.
رسولی، ع.؛ روشنی، ر. و قاسمی، ا. (1392). تحلیل تغییرات زمانی و مکانی بارش‏های سالانة ایران، فصل‏نامة تحقیقات جغرافیایی، 28(۱) (پیاپی 108): 205-224.
روشن، غ.؛ خوش‏اخلاق، ف. و عزیزی، ق. (1391). آزمون مدل مناسب گردش عمومی جو برای پیش‏یابی مقادیر دما و بارش ایران تحت شرایط گرمایش جهانی، فصل‏نامة جغرافیا و توسعه، 10(27): 19-35.
سازمان هواشناسی کشور، آمار و اطلاعات بارندگی سالانة ایستگاه‏های هواشناسی (1347-1397).
شرکت مدیریت منابع آب ایران (وزارت نیرو)، گزارش میزان بارندگی و جریان‏های سطحی (1343-1397).
صوفی، م. و علیجانی، ب. (1391). تغییر اقلیم در ناهمواری‏های زاگرس، مجلة فصل‏نامة جغرافیایی سرزمین، 9(۳۴): 45-64.
طبری، ح. و معروفی، ص. (1390). آشکارسازی روند تغییرات دبی رودخانة مارون با استفاده از روش‏های پارامتری و ناپارامتری، فصل‏نامة تحقیقات جغرافیایی، 2: 17119-17141.
عزیزی، ق. و روشنی، م. (1387). مطالعة تغییر اقلیم در سواحل جنوبی دریای خزر به روش من- کندال، مجلة پژوهش‏های جغرافیایی، 64: 13-28.
عزیزی، ق.؛ شمسی‏پور، ع. و یاراحمدی، د. (1387). بازیابی تغییر اقلیم در نیمة غربی کشور با استفاده از تحلیل‏های آماری چندمتغیره، فصل‏نامة پژوهش‏های جغرافیای طبیعی (پژوهش‏های جغرافیایی)، 40(۶۶): 19-35.
عساکره، ح. و دوستکامیان، م. (1393). تغییرات زمانی و مکانی آب قابل بارش در جو ایران‏زمین، فصل‏نامة تحقیقات منابع آب ایران، 10(۱)(مسلسل 29): 72-86.
فرج‏زاده، م. (1392). تحلیل اثرات تغییر اقلیم بر میزان آبدهی رودخانه مطالعة موردی: رودخانة ششپیر، جغرافیا و برنامه‏ریزی محیطی، 24(۱) (پیاپی 49): 17-32.
محمدی، ح. و تقوی، ف. (1384). روند شاخص‏های حدی دما و بارش در تهران، فصل‏نامة پژوهش‏های جغرافیایی، 37(۵۳):151-172.
مدرسی، ف.؛ عراقی‏نژاد ش، ب.؛ ابراهیمی، ک. و خلقی، م. (1390). بررسی اثر تغییر اقلیم بر میزان آبدهی سالانة رودخانه‏ها (مطالعة موردی: رودخانة گرگان‏رود)، نشریة آب و خاک، 25: 1365-1377.
مساح بوانی، ع. و مرید، س. (1384). اثرات تغییر اقلیم بر جریان رودخانة زاینده‏رود اصفهان، علوم و فنون کشاورزی و منابع طبیعی، 4: 17-27.
Aleyasin, A. (2005). Water in Crisis. Irnian society of consulting engineers Press. Tehran, March, 2005. 518pp.
Asakereh, H. and Dostkamian, M. (2014). Time and Spatial Changes of Precipitation in Iran's Earth's Climate, Journal of Water Resources Research, 10(1): 72-86.
Azizi, Gh. And Rushanni, M. (2008). Study of climate change on the southern shores of the Caspian Sea using the Man-Kendall method. Geographical Research Journal, 64: 13-28.
Azizi, Gh.; Shamsipour, A. and Yarahmadi, D. (2008). Recovery of Climate Change in the Midwest of the Country Using Multivariate Statistical Analysis, Quarterly Journal of Natural Geography (Geographical Research), 40(66): 19-35.
Bozkurt, D. and Sen, O. L. (2013). Climate change impacts in the Euphrates-Tigris Basin based on different model and scenario simulations. Journal of Hydrology, 480: 149-161.
Buishand, T.A.; De Martino, G.; Spreeuw, JN. and Brandsma, T. (2013). Homogeneity of precipitation series in the Netherlands and their trends in the past century. International Journal of Climatology, 33: 815-833, DOI: 10.1002/joc.3471.
Carless, D. and Whitehead, P. G. (2013). The potential impacts of climate change on hydropower generation in Mid Wales. IWA Publishing 2013 Hydrology Research, 44.3, 2013. Doi: 10.2166/nh.2012.012.
Chang Joo Kim; Min Jae Park and Joo Heon Lee (2014). Analysis of climate change impacts on the spatial and frequency patterns of drought using a potential drought hazard mapping approach, International Journal of Climatology, 34: 61-80. DOI: 10. 1002/joc .3666.
Cherry, J.; Heidi, C.; Martin, V.; Arthur, S. and Cintia, U. (2005). Impacts of the North Atlantic Oscillation on Scandinavian Hydropower Production and Energy Markets. Water Resources Management, 19: 673-691. DOI: 10.1007/s 11269-005-3279-z.
Deepashree, R. D.; Mujumdar, P.P. (2010). Reservoir performance under uncertainty in hydrologic impacts of climate change. Advances in Water Resources, 33: 312-326. Elsevier Ltd.
Ebrahimi, E. and Kardavani, P. (2014). Study of Climate Change in Anzali International Pond by My Method Kendall, Ahwaz Islamic Azad University, 12: 59-72.
Farajzadeh, M. (2013). Analysis of the effects of climate change on river discharge. Case study: Sheshpir River, Geography and Environmental Planning, 24(1): 17-32.
Ficklin, D.L.; Stewart, I.T.; Maurer E.P. (2013). Climate Change Impacts on Streamflow and Subbasin-Scale Hydrology in the Upper Colorado River Basin. PLoS ONE 8(8): e71297. doi:10.1371/journal.pone.0071297
Food and Agriculture Organization of the United Nations Rome (FAO) (2003). Review of world water resources by Country. (RWWR)
IPCC (Intergovernmental Panel on Climate Change) (2001). Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK and New York.
IPCC, Climate Change Reports (2004-2017). The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom; New York USA.
Jahanbakhsh, S.; Khorshidduost, A.; Dinpejo, Y. and Sarafrozeh, F. (2014). Trend Analysis and Estimation of Return Temperature and Limit Precipitation Periods in Tabriz, Journal of Geography and Planning, 18(50): 107-133.
Kienzle, S. W.; Nemeth, M. W.; Byrne, J. M.; MacDonald, R. J. (2012). simulating the hydrological impacts of climate change in the upper North Saskatchewan River basin, Alberta, Canada, Journal of Hydrology, 412-413: 76-89.
Kopytkovskiya, M.; Gezab, M.;  McCray, J.E. (2015). Climate-change impacts on water resources and hydropower potential in the Upper Colorado River Basin. Journal of Hydrology: Regional Studies, 3: 473-493.
Majone, B.; Bovolo, C. I.; Bellin, A.; Blenkinsop, S. and Fowler, H. J. (2009). Modeling the impacts of future climate change on water resources for the Gállego river basin (Spain), Water Resources Research, 48(1): W01512.
Matonse, A. H.; Pierson, D. C.; Frei, A.; Zion, M. S.; Anandhi, A.; Schneiderman, E. and Wright, B. (2013). Investigating the impact of climate change on New York City’s primary water supply. Climate Change, 116(3): 437-654.
Mauro, Naghettini (2016). Fundamentals of Statistical Hydrology 2016 Edited by Springer Press.
Mesah Bovani, A. and Morid, S. (2005). The effects of climate change on the flow of the Zayandeh-e-Rud River of Isfahan, Science and Technology of Agriculture and Natural Resources, 4: 17-27.
Meteorological Organization of the Iran, data and information on annual precipitation of meteorological stations (1968-2018).
Mohammadi, H. and Taghavi, F. (2005). The trend of temperature and precipitation indexes in Tehran, Journal of Geographical Survey, 37(53): 151-172.
Modaresi, F.; Araghinejad, B.; Ebrahimi, K. and Kholaki, M. (2011). Investigating the effect of climate change on annual discharge of rivers (Case study: Gorganroud River), Water and Soil Journal, 25: 1365-1377.
Murphy, J.; Sexton, D.; Jenkins, G.; Boorman, P.; Booth, B.; Brown, K.; Clark, R.; Collins, M.,; Harris, G. ans Kendon, L. (2009). UK Climate Projections Science Report: Climate Change Projections. Met Office Hadley Centre, Exeter, UK, 190.
Randles, R. H.; Hettmansperger, T. P. and Casella, G. (2004). Introduction to the Special Issue Nonparametric Statistics. Statistical Science, 19: 561-562.
Rasoul, A.; Roshani, R. and Ghasemi, A. (2013). Analysis of Temporary and spatial changes of annual ranges of Iran, Journal of Geographical Research, 28(108): 205-224.
Räsänen T. A.; Jorma K.; Hannu L.; Matti Kummu. (2012). Downstream Hydrological Impacts of Hydropower Development in the Upper Mekong Basin. Water Resour Manage, 26: 3495-3513. DOI 10.1007/s11269-012-0087-0
Ravazzani, G.; Secondo, B.; Alessio, S.; Alfonso, S. and Marco, M. (2015). An integrated Hydrological Model for Assessing Climate Change Impacts on Water Resources of the Upper Po River Basin. Water Resour Management, 29: 1193-1215. Springer Science. DOI 10.1007/s11269-014-0868-8.
Rushan, Gh.; Khoshakhlagh, F. and Azizi, Gh. (2012). Testing the proper model for atmospheric circulation of atmosphere for the estimation of Iran's temperature and precipitation conditions under global warming conditions, Geography and Development Quarterly, 10(27): 19-35.
Shrestha, S.; Bajracharya, Ajay R.; Babel, Mukand S. (2016). Assessment of risks due to climate change for the Upper Tamakoshi Hydropower Project in Nepal. Jou. Climate Risk Management, 14: 27-41. Published by Elsevier.
Sueyers, R. (1990). On the Statistical Analysis of Series of Observation, WMO, 415: 2-15.
Sun, J.; Xiaohui, L.; Yu, T.; Weihong, L. and Yuhui, W. (2013). Hydrological impacts of climate change in the upper reaches of the Yangtze River Basin. Quaternary International, 304: 62e74.
Suoffi, M. and Alijani, B. (2012). Climate Change in Mountain of Zagros, Journal of Geographic Quarterly of the Territory, 9(34): 45-64.
Tabari, H. and Maruffi, S. (2011). Detection of Maroon River Flow Changes Using Parametric and Non-Parametric Methods, Geographical Survey Quarterly, 2: 17119-17141.
Water Resources Management Company of Iran (Ministry of Energy), Report on rainfall and surface currents (1968-2018).
Wolfowitz, J. (1942). Additive Partition Functions and a Class of Statistical Hypotheses. Annals of Statistics, 13: 247-279.
World Meteorological Organization, Climate Change (1966). Technical Note, No. 195. TP. 100 Secretariat of the WMO Geneva Switzerland 1966 pp 1-79.
Zhang, X. et al. (2005). Trends in Middle East climate extreme indices from 1950 to 2003, J. Geophys. Res., 110, D22104, doi: 10.1029/2005JD006181.